首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previously described genetic system comprising a Mutator Strain (MS) and the Stable Strain (SS) from which it originated is characterized by genetic instability caused by transpositions of the retrotransposon gypsy. A series of genetic crosses was used to obtain three MS derivatives, each containing one MS chromosome (X, 2 or 3) in the environment of SS chromosomes. All derivatives are characterized by elevated frequencies of spontaneous mutations in both sexes. Mutations appear at the premeiotic stage and are unstable. Transformed derivatives of SS and another stable strain 208 were obtained by microinjection of plasmid DNA containing transpositionally active gypsy inserted into the Casper vector. In situ hybridization experiments revealed amplification and active transposition of gypsy in SS derivatives, while the integration of a single copy of gypsy into the genome of 208 does not change the genetic properties of this strain. We propose that genetic instability in the MS system is caused by the combination of two factors: mutation(s) in gene(s) regulating gypsy transposition in SS and its MS derivatives, and the presence of transpositionally active gypsy copies in MS but not SS.  相似文献   

2.
Summary The gypsy element of Drosophila melanogaster is the first retrovirus identified in invertebrates. Its transposition is controlled by a host gene called flamenco (flam): restrictive alleles of this gene maintain the retrovirus in a repressed state while permissive alleles allow high levels of transposition. To develop a cell system to study the gypsy element, we established four independent cell lines derived from the Drosophila strain SS, which contains a permissive allele of flamenco, and which is devoid of transposing copies of gypsy. The ultrastructural analysis of three SS cell lines revealed some remarkable characteristics, such as many nuclear virus-like particles, cytoplasmic dense particles, and massive cisternae filled with a fibrous material of unknown origin. Gypsy intragenomic distribution has been compared between the three cell lines and the original SS fly strain, and revealed in two of the cell lines an increase in copy number of a restriction fragment usually present in active gypsy elements. This multiplication seems to have occurred during the passage to the cell culture. Availability of SS cell lines should assist studies of gypsy transposition and infectivity and might be useful to produce high amounts of gypsy viral particles. These new lines already allowed us to show that the Envelope-like products of gypsy can be expressed as membrane proteins.  相似文献   

3.
Distribution of two structural functional variants of the gypsy(MDG4) mobile genetic element was examined in 44 strains of Drosophila melenogaster. The results obtained suggest that less transpositionally active gypsyvariant is more ancient component of the Drosophilagenome. Using Southern blotting, five strains characterized by increased copy number of gypsywith significant prevalence of the active variant over the less active one were selected for further analysis. Genetic analysis of these strains led to the suggestion that some of them carry factors that mobilize gypsyindependently from the cellular flamencogene known to be responsible for transposition of this element. Other strains probably contained a suppressor of the flam mutant allele causing active transpositions of the gypsy. Thus, the material for studying poorly examined relationships between the retrovirus and the host cell genome was obtained.  相似文献   

4.
The laboratory mutator strain (MS) has properties which can be characterized as genetic instability. It exhibits the high level of gypsy autonomous transposition in somatic and germ cells. This paper summarizes all the data concerning this system and gypsy itself that has been obtained in our works during the last years.  相似文献   

5.
Olfactory sensitivity and locomotor activity was assayed in Drosophila melanogasterstrains carrying a mutation of the flamencogene, which controls transposition of retrotransposon gypsy. A change in olfactory sensitivity was detected. The reaction to the odor of acetic acid was inverted in flies of the mutator strain (MS), which carried the flammutation and active gypsycopies and were characterized by genetic instability. Flies of the genetically unstable strains displayed a lower locomotor activity. The behavioral changes in MS flies can be explained by the pleiotropic effect of the flammutation or by insertion mutations which arise in behavior genes as a result of genome destabilization by gypsy.  相似文献   

6.
A previously described genetic system comprising a Mutator Strain (MS) and the Stable Strain (SS) from which it originated is characterized by genetic instability caused by transpositions of the retrotransposon gypsy. A series of genetic crosses was used to obtain three MS derivatives, each containing one MS chromosome (X, 2 or 3) in the environment of SS chromosomes. All derivatives are characterized by elevated frequencies of spontaneous mutations in both sexes. Mutations appear at the premeiotic stage and are unstable. Transformed derivatives of SS and another stable strain 208 were obtained by microinjection of plasmid DNA containing transpositionally active gypsy inserted into the Casper vector. In situ hybridization experiments revealed amplification and active transposition of gypsy in SS derivatives, while the integration of a single copy of gypsy into the genome of 208 does not change the genetic properties of this strain. We propose that genetic instability in the MS system is caused by the combination of two factors: mutation(s) in gene(s) regulating gypsy transposition in SS and its MS derivatives, and the presence of transpositionally active gypsy copies in MS but not SS.  相似文献   

7.
Summary Using the in situ hybridization technique, we have analysed the distribution of mobile elements in the X chromosomes of male offspring of individual mutator strain (MS) males crossed to attached-X females. The experiments demonstrate varying cytological localization of the mobile elements gypsy (mdg4) and hobo among different individuals. The other mobile elements investigated (mdgl, mdg3, 412, 297, copia, 17.6, Doc, H.M.S. Beagle, Springer, FB) display no changes in insertion sites. Such an experiment is equivalent to analysis of separate gametes of an MS individual. Thus, the ability of gypsy and hobo to transpose in germ-line cells is demonstrated directly. Transpositions occur at premeiotic stages of germ cell development, since they appear in clusters. Analysis of gypsy and hobo transposition events shows that they occur independently. The same experiment demonstrates that gypsy localization varies significantly between different salivary gland cells of an MS individual. Two types of gypsy hybridization sites can be distinguished: permanent sites, common to all cells, and additional ones varying between neighbouring salivary gland cells. These additional sites indicate gypsy transposition in somatic cells of the MS. Transposition of the hobo element in somatic cells has also been observed.  相似文献   

8.
Summary The laboratory imitator strain (MS) of Drosophila melanogaster is characterized by an elevated frequency of spontaneous mutation (10–3–10–4). Mutations occur in both sexes at premeiotic stages of germ cell development. The increased mutability is a characteristic feature of MS itself, since it appears in the absence of outcrossing. Most of the mutations arising in this strain are unstable: reversions to wild type, high frequency mutation to new mutant states and replicating instability were observed. We have investigated the localization of the transposable genetic elements mdg1, 412, mdg3, gypsy (mdg4), copia and P in the X chromosomes of the MS and in the mutant lines y, ct, sbt derived from it by in situ hybridization. The P element was not found in any of these strains. The distributions of mdg1, 412, mdg3 and copia were identical in the X chromosomes of the MS and its derivatives. However, the sites of hybridization with gypsy differ in the various lines tested. In the polytene chromosomes of MS animals significant variation in location and number of copies of the gypsy element was demonstrated between different larvae; copy numbers as high as 30–40 were observed. These results suggest autonomous transposition of gypsy in the MS genome while several other mobile elements remain stable.  相似文献   

9.
Here we describe of a novel Drosophila LTR-type retrotransposon that is expressed in the embryonic CNS midline glia and in the embryonic germ cells. The element is related to the gypsy and burdock retrotransposons and was termed midline-jumper. In addition to cDNA clones generated from internal retrotransposon sequences, we have identified one cDNA clone that appears to reflect a transposition event, indicating that the midline-jumper retrotransposon is not only transcribed but also able to transpose during Drosophila development.  相似文献   

10.
Gypsy is an endogenous retrovirus present in the genome of Drosophila melanogaster. This element is mobilized only in the progeny of females which contain active gypsy elements and which are homozygous for permissive alleles of a host gene called flamenco (flam). Some data strongly suggest that gypsy elements bearing a diagnostic HindIII site in the central region of the retrovirus body represent a subfamily that appears to be much more active than elements devoid of this site. We have taken advantage of this structural difference to assess by the Southern blotting technique the genomic distribution of active gypsy elements. In some of the laboratory Drosophila stocks tested, active gypsy elements were found to be restricted to the Y chromosome. Further analyses of 14 strains tested for the permissive vs. restrictive status of their flamenco alleles suggest that the presence of permissive alleles of flam in a stock tends to be associated with the confinement of active gypsy elements to the Y chromosome. This might be the result of the female-specific effect of flamenco on gypsy activity. Received: 13 June 1997 / Accepted: 27 August 1997  相似文献   

11.
Ty3/gypsy-type LTR-retrotransposons have been found only in lily and maize but not in cryptogam. In fernAdiantum, we recently found a full-lengthTy3/gypsy-type LTR-retrotransposon (ARET-1; 8284 bp). This retrotransposon has both 5′ and 3′ LTRs (1.2 kb), a primer binding site, a polypurine tract, and an RNA binding motif and its domain arrangement in thepol region is the same as that ofTy3/gypsy-type retrotransposon. These results suggest thatTy3/gypsy-type retrotransposons are widespread among vascular plants. The nucleotide sequence data reported will appear in the EMBL, DDBJ and GenBank Nucleotide Sequence Databases under the accession number AB003364.  相似文献   

12.
Transposition activity of Drosophila melanogaster gypsy retrotransposon is controlled by the flamenco locus. Transposition activity of the gypsy, ZAM, Idefix, springer, nomad, rover, Quasimodo, 17.6, 297, and Tirant retrotransposons was investigated in isogenic SS and MS strains of D. melanogaster mutant for the flamenco gene. It has been shown that gypsy, ZAM, and Idefix have different genomic surrounding in the studied strains that evidences to their transposition in these strains.  相似文献   

13.
Labrador M  Sha K  Li A  Corces VG 《Genetics》2008,180(3):1367-1378
The gypsy retrovirus of Drosophila is quite unique among retroviruses in that it shows a strong preference for integration into specific sites in the genome. In particular, gypsy integrates with a frequency of >10% into the regulatory region of the ovo gene. We have used in vivo transgenic assays to dissect the role of Ovo proteins and the gypsy insulator during the process of gypsy site-specific integration. Here we show that DNA containing binding sites for the Ovo protein is required to promote site-specific gypsy integration into the regulatory region of the ovo gene. Using a synthetic sequence, we find that Ovo binding sites alone are also sufficient to promote gypsy site-specific integration into transgenes. These results indicate that Ovo proteins can determine the specificity of gypsy insertion. In addition, we find that interactions between a gypsy provirus and the gypsy preintegration complex may also participate in the process leading to the selection of gypsy integration sites. Finally, the results suggest that the relative orientation of two integrated gypsy sequences has an important role in the enhancer-blocking activity of the gypsy insulator.  相似文献   

14.
15.
Mobile genetic elements constitute a substantial part of eukaryotic genome and play an important role in its organization and functioning. Co-evolution of retrotransposons and their hosts resulted in the establishment of control systems employing mechanisms of RNA interference that seem to be impossible to evade. However, “active” copies of endogenous retrovirus gypsy escape cellular control in some cases, while its evolutionary elder “inactive” variants do not. To clarify the evolutionary relationship between “active” and “inactive” gypsy we combined two approaches: the analysis of gypsy sequences, isolated from G32 Drosophila melanogaster strain and from different Drosophila species of the melanogaster subgroup, as well as the study of databases, available on the Internet. No signs of “intermediate” (between “active” and “inactive”) gypsy form were found in GenBank, and four full-size G32 gypsy copies demonstrated a convergence that presumably involves gene conversion. No “active” gypsy were revealed among PCR generated gypsy ORF3 sequences from the various Drosophila species indicating that “active” gypsy appeared in some population of D. melanogaster and then started to spread out. Analysis of sequences flanking gypsy variants in G32 revealed their predominantly heterochromatic location. Discrepancy between the structure of actual gypsy sites in G32 and corresponding sequences in database might indicate significant inter-strain heterochromatin diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Transposable elements are a major source of genetic change, including the creation of novel genes, the alteration of gene expression in development, and the genesis of major genomic rearrangements. They are ubiquitous among contemporary organisms and probably as old as life itself. The long coexistence of transposable elements in the genome would be expected to be accompanied by host-element coevolution. Indeed, the important role of host factors in the regulation of transposable elements has been illuminated by recent studies of several systems in Drosophila. These include host factors that regulate the P element, a host mutation that renders the genome permissive for gypsy mobilization and infection, and newly induced mutations that affect the expression of transposon insertion mutations. The finding of a type of hybrid dysgenesis in D. virilis, in which multiple unrelated transposable elements are mobilized simultaneously, may also be relevant to host-factor regulation of transposition.  相似文献   

17.
18.

Background  

Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of Ty3/gypsy-like LTR retrotransposons that led to massive genomic expansion in three Helianthus (sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.  相似文献   

19.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

20.

Background  

Sequences homologous to the gypsy retroelement from Drosophila melanogaster are widely distributed among drosophilids. The structure of gypsy includes an open reading frame resembling the retroviral gene env, which is responsible for the infectious properties of retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号