首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We have extended our previous investigations on the effect of organic osmolytes (glycine, proline, taurine, mannitol, sorbitol and trimethylammonium oxide (TMAO)) on chromatin solubility, to the study of their influence on DNA stability and DNA-histone interactions. Our aim was to understand the molecular origin of the protection effects observed.

To this end, we determined the amount of histone H1 required to precipitate DNA or H1-depleted chromatin, at various salt concentrations, in the presence of the above mentioned organic compounds. We found a shift of the H1/DNA ratio required to reach 50% precipitation, towards higher values. Taurine was the most efficient compound followed by mannitol and glycine, then sorbitol and proline. On the contrary, TMAO favoured the precipitation process. We attempted to interpret these results on the basis of Manning's counterion condensation theory.

Changes in histone H1 structure folding and in DNA melting temperature Tm were also analyzed. Glycine, taurine, sorbitol and TMAO increased the degree of secondary structure folding of the protein while mannitol and sorbitol had no effect. Taurine, glycine and proline decreased the Tm of DNA TMAO largely destabilized DNA but mannitol and sorbitol had no effect

Measurements of NaC1 activity in the presence of organic osmolytes did not reveal sufficiently large changes to account for their protection effect against chromatin precipitation. The osmotic coefficient j of the organic effectors solutions increased in the order : taurine < glycine < sorbitol < mannitol < proline ? TMAO. For the two latter compounds, the j values increased above 1 at high concentration.

We consider that the organic compounds investigated maybe classified into three categories : (i) class I (zwitterionic compounds : glycine, proline, taurine) would produce sodium ions release from the DNA surface; (ii) class II (the very polar molecule TMAO) would increase sodium counterions condensation on DNA together with histone HI folding; (iii) class III compounds (mannitol and sorbitol) would possibly produce a modification of NaCl activity but no definite explanation could be found for the complex behavior of these compounds.  相似文献   

2.
The condensation of chromatin and histone H1-depleted chromatin by spermine   总被引:2,自引:0,他引:2  
At low ionic strength, spermine induces aggregation of native and H1-depleted chromatin at spermine/phosphate (Sp/P) ratios of 0.15 and 0.3, respectively. Physico-chemical methods (electric dichroism, circular dichroism and thermal denaturation) show that spermine, at Sp/P less than 0.15, does not appreciably alter the conformation of native chromatin and interacts unspecifically with all parts of chromatin DNA (linker as well as regions slightly or tightly bound to histones). In chromatin, the role of spermine could be more important in the stabilization of higher-order structure than in the condensation of the 30 nm solenoid. The addition of spermine to H1-depleted chromatin revealed two important features: (i) spermine can partially mimic the role of histone H1 in the condensation of chromatin; (ii) the core histone octamer does not appear to play any role in the aggregation process by spermine as DNA and H1-depleted chromatin aggregate at the same Sp/P ratio.  相似文献   

3.
The structure of the inner histone complex extracted from chicken erythrocyte chromatin with 2 M NaCl has been studied as a function of pH. At pH 6, the complex dissociates to (H3–H4)2 tetramer and H2A·H2B dimer, with little change in α-helix content (as monitored by circular dichroism at 222 nm). Although the circular dichroism of tyrosyl side chains is also largely unchanged by the dissociation, measurements of intrinsic fluorescence do suggest a change in the environment of one or more tyrosines as a result of dissociation. Below pH 4, the histones become partially unfolded, lose specific secondary and tertiary structure, and undergo nonspecific aggregation. Both the pH 6 and 4 transitions, which are largely reversible, parallel pH-induced structural changes of nucleosomes (Zama, M., Olins, D.E., Prescott, B. and Thomas, G.J. (1978) Nucleic Acids Res. 5, 3881–3897). The results are consistent with the presence of tyrosine residues at the histone subunit-subunit contacts and suggest that histone conformation within the globular regions is largely independent of histone-DNA interactions.  相似文献   

4.
N-Pyrenemaleimide, a fluorescent probe that specifically labels histone H3 of rat liver chromatin in situ, was used to monitor the accessibility of histone H3 in chromatin isolated from rat liver at different times during degeneration. At times of maximum DNA synthesis (18--24 h after hepatectomy), the accessibility of the probe was found to be markedly (40--50%) increased. This increase is abolished, however, by treatment of the chromatin fibres with high salt (2 M-NaCl) or detergent. Tryptophan fluorescence was also enhanced at points of maximum DNA synthesis, suggesting that some non-histone tryptophan-containing protein was being synthesized. The polarization of the labelled histone H3 is not markedly altered, suggesting that fibre aggregation or dissociation does not occur. Mononucleosomes extracted from sham-operated and hepatectomized animals did not exhibit any difference in binding to the probe. Also, analysis of the chromatin protein by electrophoresis on detergent- and acid/urea/ Triton-X-100-containing polyacrylamide gels showed no detectable difference in histone H3 : 1, H3 : 2 or H3 : 3 subclasses.  相似文献   

5.
It has been demonstrated by digestion studies with micrococcal nuclease that reconstitution of complexes from DNA and a mixture of the four small calf thymus histones H2A, H2B, H3, and H4 leads to subunits closely spaced in a 137 +/- 7-nucleotide-pair register. Subunits isolated from the reconstituted complex contain nearly equimolar amounts of the four histones and sediment at 11.6S. On DNase I digestion both the reconstituted complex and the separated subunits gave rise to series of single-stranded DNA fragments with a 10-nucleotide periodicity. This indicates that the reconstitution leads to subunits very similar to nucleosome cores. Nucleosome cores closely spaced in a 140-nucleotide-pair register were also obtained upon removal of histone H1 from chromatin by dissociation with 0.63 M NaCl and subsequent ultracentrifugation. In reconstitution experiments with all five histones (including histone H1) our procedure did not lead to tandemly arranged nucleosomes containing about 200 nucleotide pairs of DNA. In the presence of EDTA, DNase II cleaved calf thymus nuclei and chromatin at about 200-nucleotide-pair intervals whereas in the presence of Mg2+ cleavage at intervals of approximately half this size was observed. The change in the nature of the cleavage pattern, however, was no longer found after removal of histone H1 from chromatin. This indicates that H1 influences the accessibility of DNase II cleavage sites in chromatin. This finding is discussed with respect to the influence of histone H1 on chromatin superstructure.  相似文献   

6.
Abstract: Poly(A)+ mRNA was isolated from cultured mouse cerebellar granule cells and injected into Xenopus oocytes. This led to the expression of receptors that evoked large membrane currents in response to glycine. Current-responses were also obtained after application of β-alanine and taurine, but these were very low relative to that of glycine (maximal β-alanine and taurine responses were 8 and 3% of that of glycine, respectively). The role of glycine receptors on K+-evoked transmitter release in cultured cerebellar granule cells was also assayed. Release of preloaded d -[3H]aspartate evoked by 40 m M K+ was dose dependently inhibited by glycine, and the concentration producing half-maximal inhibition was 50 μ M. Taurine, β-alanine, and the specific GABAA receptor agonist isoguvacine also inhibited K+-evoked release, and the maximal inhibition was similar for all agonists (˜40%). The EC50 value was 200 μ M for taurine, 70 μ M for β-alanine, and 4 μ M for isoguvacine. Bicuculline (150 μ M ) antagonized the inhibitory effect of isoguvacine (150 μ M ) but not that of glycine (1 m M ). In contrast, strychnine (20 μ M ) antagonized the inhibitory effect of glycine (1 m M ) but not that of isoguvacine (150 μ M ). The pharmacology of the responses to β-alanine and taurine showed that these agonists activate both glycine and GABAA receptors. The results indicate that cultured cerebellar granule cells translate the gene for the glycine receptor and that activation of glycine receptors produces neuronal inhibition.  相似文献   

7.
8.
The role of histone H1 in the actual interactions bringing about chromatin folding is investigated by studying the reversibility of its dissociation. H1 was dissociated by increase of the NaCl concentration and reassociated by dialysis, without removal from the dialysis bag. To scrutinize the fidelity of this stoichiometric form of chromatin reconstitution, we use circular dichroism, nuclease digestion, thermal denaturation and the sensitive electric birefringence method. No alteration of the repeat length and no nucleosomal sliding are observed upon the reassociation procedure. However, under all the different conditions investigated, the original value of the positive electric birefringence is never recovered, indicating an irreversible change of structure. CD and melting profiles confirm that DNA-protein interactions are modified, and orientational relaxation time measurements indicate that these structural perturbations affect the salt-induced transition of polynucleosomal fibers. The striking conclusion of these studies is that variations of ionic concentration are sufficient to induce irreversible structural alterations affecting the higher-order folding of chromatin. It is of interest that the only sample which exhibits behavior upon reassociation comparable to that of native chromatin is the one which experienced the fastest salt transitions. We suggest that these conformational changes arise from the unbinding to DNA of certain basic tails of histone(s), and that a competition for DNA binding locations exists upon the reassociation. These results are then additional arguments (Mazen, A., Hacques, M.F. and Marion, C.,J. Mol. Biol. 194, 741-745 (1987)), to suggest that dissociation of H1 might modify a direct interaction between basic tails of core histones and H1.  相似文献   

9.
10.
Abstract

The role of histone H1 in the actual interactions bringing about chromatin folding is investigated by studying the reversibility of its dissociation. HI was dissociated by increase of the NaCl concentration and reassociated by dialysis, without removal from the dialysis bag. To scrutinize the fidelity of this stoichiometric form of chromatin reconstitution, we use circular dichroism, nuclease digestion, thermal denaturation and the sensitive electric birefringence method. No alteration of the repeat length and no nucleosomal sliding are observed upon the reassociation procedure. However, under all the different conditions investigated, the original value of the positive electric birefringence is never recovered, indicating an irreversible change of structure. CD and melting profiles confirm that DNA-protein interactions are modified, and orientational relaxation time measurements indicate that these structural perturbations affect the salt- induced transition of poly nucleosomal fibers. The striking conclusion of these studies is that variations of ionic concentration are sufficient to induce irreversible structural alterations affecting the higher-order folding of chromatin. It is of interest that the only sample which exhibits behavior upon reassociation comparable to that of native chromatin is the one which experienced the fastest salt transitions. We suggest that these conformational changes arise from the unbinding to DNA of certain basic tails of histone(s), and that a competition for DNA binding locations exists upon the reassociation. These results are then additional arguments (Mazen, A., Hacques, M.F. and Marion, C., J. Mol. Biol. 194, 741–745 (1987)), to suggest that dissociation of H1 might modify a direct interaction between basic tails of core histones and H1.  相似文献   

11.
Chromatin remodeling is a key mechanism in adipocyte differentiation. However, it is unknown whether dietary polyphenols are epigenetic effectors for adiposity control. Ellagic acid (EA) is a naturally occurring polyphenol in numerous fruits and vegetables. Recently, EA-containing foods have been reported to reduce adiposity. In the present study, we sought to determine whether EA inhibits adipogenesis by modifying chromatin remodeling in human adipogenic stem cells (hASCs). qPCR microarray of chromatin modification enzymes revealed that 10 μmol/L of EA significantly inhibits histone deacetylase (HDAC)9 down-regulation. In addition, EA was associated with up-regulation of HDAC activity and a marked reduction of histone acetylation levels. However, chemical inhibition of HDAC activity or depletion of HDAC9 by siRNA were not sufficient to reverse the antiadipogenic effects of EA. Intriguingly, EA treatment was also associated with reduced histone 3 arginine 17 methylation levels (H3R17me2), implying the inhibitory role of EA in coactivator-associated arginine methyltransferase 1 (CARM)1 activity during adipogenesis. Boosting CARM1 activity by delivering cell-penetrating peptides of CARM1 not only recovered H3R17me2 but also restored adipogenesis evidenced by H3 acetylation at lysine 9, HDAC9 down-regulation, PPARγ expression and triglyceride accumulation. Taken together, our data suggest that reduced CARM1 activity by EA results in a decrease of H3R17me2 levels, which may interrupt consecutive histone remodeling steps for adipocyte differentiation including histone acetylation and HDAC9 dissociation from chromatin. Our work provides the mechanistic insights into how EA, a polyphenol ubiquitously found in fruits and vegetables, attenuates human adipocyte differentiation by altering chromatin remodeling.  相似文献   

12.
BACKGROUND: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.7 M. Although other nuclear proteins are also extracted at 0.7 M salt, the remaining nucleus represents a template that is relatively intact. METHODS: A cytochemical method was used to study the affinity of reconstituted linker histones for chromatin in situ in cultured human fibroblasts. We also investigated their ability to condense chromatin by using DNA-specific osmium ammine staining for electron microscopy. RESULTS: Permeabilized and H1-depleted fibroblast nuclei were suitable for the study of linker histone-chromatin interactions after reconstitution with purified linker histone subfractions. Our results showed that exogenous linker histones bind to chromatin with lower affinity than the native ones. We detected no significant differences between the main H1 and H1 degrees histone fractions with respect to their affinity for chromatin or in their ability to condense chromatin. CONCLUSIONS: Linker histone interactions with chromatin are controlled also by mechanisms independent of linker histone subtype composition.  相似文献   

13.
Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.  相似文献   

14.
15.
The influence of osmolytes, including dimethysulfoxide, glycine, proline and sucrose, on the refolding and reactivation courses of guanidine-denatured creatine kinase was studied by fluorescence emission spectra, circular dichroism spectra, recovery of enzymatic activity and aggregation. The results showed that low concentrations of dimethysulfoxide (<20%), glycine (<0.5 M), proline (<1 M) and sucrose (<0.75 M) improved the refolding yields of creatine kinase, but high osmolyte concentrations decreased its recovery. Sucrose favored the secondary structural formation of creatine kinase. Proline and sucrose facilitated refolding of the protein to its original conformation, while dimethysulfoxide and proline accelerated the hydrophobic collapse of creatine kinase to a packed protein. During the aggregation of creatine kinase, dimethysulfoxide and sucrose inhibited aggregation of creatine kinase, as did proline, but glycine was unable to inhibit aggregation. These systematic observations further support the suggestion that osmolytes, including low concentrations of dimethysulfoxide, proline or sucrose, possibly play a chaperone role in the refolding of creatine kinase. The results also indicate that sucrose and free amino acids are not only energy substrates and organic components in vivo, but also help correct protein folding.  相似文献   

16.
17.
18.
N-terminal tail phosphorylation of histone H3 plays an important role in gene expression, chromatin remodeling, and chromosome condensation. Phosphorylation of histone H3 at serine 10 was shown to be mediated by RSK2, mitogen- and stress-activated protein kinase-1 (MSK1), and mitogen-activated protein kinases depending on the specific stimulation or stress. Our previous study showed that mitogen-activated protein kinases MAP kinases are involved in ultraviolet B-induced phosphorylation of histone H3 at serine 28 (Zhong, S., Zhong, Z., Jansen, J., Goto, H., Inagaki, M., and Dong, Z., J. Biol. Chem. 276, 12932-12937). However, downstream effectors of MAP kinases remain to be identified. Here, we report that H89, a selective inhibitor of the nucleosomal response, totally inhibits ultraviolet B-induced phosphorylation of histone H3 at serine 28. H89 blocks MSK1 activity but does not inhibit ultraviolet B-induced activation of MAP kinases p70/85(S6K), p90(RSK), Akt, and protein kinase A. Furthermore, MSK1 markedly phosphorylated serine 28 of histone H3 and chromatin in vitro. Transfection experiments showed that an N-terminal mutant MSK1 or a C-terminal mutant MSK1 markedly blocked MSK1 activity. Compared with wild-type MSK1, cells transfected with N-terminal or C-terminal mutant MSK1 strongly blocked ultraviolet B-induced phosphorylation of histone H3 at serine 28 in vivo. These data illustrate that MSK1 mediates ultraviolet B-induced phosphorylation of histone H3 at serine 28.  相似文献   

19.
Electrophoretic mobility, amino acid composition and salt dissociation of histones isolated from sperm of sea urchin Strongylocentrotus intermedius and calf thymus cells were studied. The special arginine-rich histone fraction (I) has been observed in sea urchin sperm chromatin, this fraction being absent in calf thymus chromatin. Dissociation of lysine-containing histone fractions from sea urchin chromatin occured in the range of 0.7 to 1.0 M NaCl concentrations. H1 of calf thymus chromatin was totally extracted with 0.6 M NaCl. In the course of a further increase of salt concentrations (up to 1.5 M NaCl) a practically total extraction of histones from sperm chromatin was observed, while about 20% of proteins remained bound to DNA in thymus chromatin after extraction with 2.0 M NaCl. The template activity of non-extracted DNP preparations from urchin sperm was equal to 2-3% of that of totally deproteinized DNA. The template activity of DNP gradually increased at protein extraction from DNP preparations. The hybridization capacity of RNA transcribed on partially dehistonized DNP templates in vitro also increased.  相似文献   

20.
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号