首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acids have been deleted from the processing site of pre-beta-lactamase, either into the signal sequence or into the mature protein. Whereas the loss of more than 2 amino acid residues from the C-terminal end of the signal sequence prevents the translocation of the protein into the periplasm, the removal of two or more amino acids from the beginning of the mature protein has no effect on the translocation of the truncated protein. The insertion of an additional one to three amino acids at the processing site has no detectable phenotypic consequence either. It appears that many sequences for the first few residues of the mature protein allow successful translocation and processing. In sharp contrast, the removal of one (but not both) of the amino acids that flank the processing site results in a severe growth defect in the host cell and very low expression of the protein. Yet removal of two amino acids from either side of the processing site, or removal of both the flanking residues of the processing site, results in normal secretion and signal cleavage. These results illustrate the limits on the amino acid sequence around the processing junction and suggest that interference with the signal cleavage step can lead not only to aborted secretion but also to pleiotropic consequences for the growth of the host organism.  相似文献   

2.
Sequences beyond the cleavage site influence signal peptide function   总被引:8,自引:0,他引:8  
The earliest events in protein secretion include targeting to and translocation across the endoplasmic reticulum membrane. To dissect the mechanism by which signal sequences mediate translocation in eukaryotes, we are examining the behavior of fusion proteins and deletion mutants in cell-free systems. We demonstrate that the protein domain being translocated can have profound impact on the efficiency of the translocation process. Specifically, deletions in the mature prolactin "passenger" domain, beyond the signal cleavage site, reduce the efficiency of signal function. The effect of these deletions on signal function is observed when this signal sequence is in its normal position, at the amino terminus, and when internalized by the addition of 117 amino acids of chimpanzee alpha-globin. Alterations in the interaction of the deletion mutants with the signal recognition particle and with another component of the translocation system, signal peptidase, were observed. Our results suggest that subtle changes in sequences beyond the signal cleavage site can alter the efficiency of co-translational translocation by affecting various signal-receptor interactions.  相似文献   

3.
Defective Escherichia coli signal peptides function in yeast   总被引:3,自引:2,他引:1  
To investigate structural characteristics important for eukaryotic signal peptide function in vivo, a hybrid gene with interchangeable signal peptides was cloned into yeast. The hybrid gene encoded nine residues from the amino terminus of the major Escherichia coli lipoprotein, attached to the amino terminus of the entire mature E. coli beta-lactamase sequence. To this sequence were attached sequences encoding the nonmutant E. coli lipoprotein signal peptide, or lipoprotein signal peptide mutants lacking an amino-terminal cationic charge, with shortened hydrophobic core, with altered potential helicity, or with an altered signal-peptide cleavage site. These signal-peptide mutants exhibited altered processing and secretion in E. coli. Using the GAL10 promoter, production of all hybrid proteins was induced to constitute 4-5% of the total yeast protein. Hybrid proteins with mutant signal peptides that show altered processing and secretion in E. coli, were processed and translocated to a similar degree as the non-mutant hybrid protein in yeast (approximately 36% of the total hybrid protein). Both non-mutant and mutant signal peptides appeared to be removed at the same unique site between cysteine 21 and serine 22, one residue from the E. coli signal peptidase II processing site. The mature lipo-beta-lactamase was translocated across the cytoplasmic membrane into the yeast periplasm. Thus the protein secretion apparatus in yeast recognizes the lipoprotein signal sequence in vivo but displays a specificity towards altered signal sequences which differs from that of E. coli.  相似文献   

4.
Expression plasmids have been constructed for evaluation of different signal sequences for secretion and correct amino terminal processing of foreign proteins expressed in Escherichia coli. cDNA representing the N-terminal region (1-37) of human parathyroid hormone was inserted between DNA coding for two different forms of the signal sequence and two IgG binding domains (ZZ) derived from Staphylococcal protein A. The expression products were secreted to the periplasm and even to the growth medium and were easily purified by affinity chromatography using the ZZ part as a specific handle. Further analyses showed that the expression products were correctly processed to the mature protein hPTH(1-37)ZZ in a construct where the wild type signal sequence of Staphylococcus protein A was used. When a mutated signal sequence which lacks the normal cleavage site was employed, the fusion protein was not cleaved. Since signal sequences seem to be processed in the correct way in this system, we conclude that the general design of this type of expression vector is well suited for studying the N-terminal processing and secretion of heterologous proteins in E. coli.  相似文献   

5.
To identify export and sorting information in outer membrane protein PhoE of Escherichia coli K-12, a set of deletions was created, resulting in the removal of N-terminal amino acids of the mature protein. Pulse-chase experiments revealed that some mutant proteins were slowly or not at all processed, but there was not correlation between processing rate and the extent of the deletions. The unprocessed precursors were accessible to trypsin in the periplasm showing that processing by leader peptidase rather than translocation is affected by these deletions. The results show that no specific sequences in the N-terminal part of the mature PhoE protein are required for translocation through the inner membrane. The capability of the processed mutant proteins to assemble into the outer membrane was correlated to the exten of the deletions. Thus, mutants which lack up to amino acid residue 14 are normally incorporated into the outer membrane. Larger deletions which removed the first postulated membrane-spanning fragment of the protein affected the efficiency of assembly: in addition to trimers of the protein in the outer membrane, also monomers were detected in the periplasm. If the deletions extended C-terminally to residue 48, only monomeric forms of the proteins were found in the periplasm.  相似文献   

6.
Exported proteins require an N-terminal signal peptide to direct them from the cytoplasm to the periplasm. Once the protein has been translocated across the cytoplasmic membrane, the signal peptide is cleaved by a signal peptidase, allowing the remainder of the protein to fold into its mature state in the periplasm. Signal peptidase I (LepB) cleaves non-lipoproteins and recognises the sequence Ala-X-Ala. Amino acids present at the N-terminus of mature, exported proteins have been shown to affect the efficiency at which the protein is exported. Here we investigated a bias against aromatic amino acids at the second position in the mature protein (P2′). Maltose binding protein (MBP) was mutated to introduce aromatic amino acids (tryptophan, tyrosine and phenylalanine) at P2′. All mutants with aromatic amino acids at P2′ were exported less efficiently as indicated by a slight increase in precursor protein in vivo. Binding of LepB to peptides that encompass the MBP cleavage site were analysed using surface plasmon resonance. These studies showed peptides with an aromatic amino acid at P2′ had a slower off rate, due to a significantly higher binding affinity for LepB. These data are consistent with the accumulation of small amounts of preMBP in purified protein samples. Hence, the reason for the lack of aromatic amino acids at P2′ in E. coli is likely due to interference with efficient LepB activity. These data and previous bioinformatics strongly suggest that aromatic amino acids are not preferred at P2′ and this should be incorporated into signal peptide prediction algorithms.  相似文献   

7.
Summary Plant ferredoxin is a nuclear-encoded chloroplast protein that is synthesized in the cytoplasm as a transit peptide-containing precursor molecule. To identify functional regions in the pre-ferredoxin transit peptide we constructed mutants with deletions of increasing length from the processing site toward the amino-terminus of the precursor. The mutant proteins were tested in an in vitro chloroplast binding and import assay. Deletion of the amino acids adjacent to the processing site completely abolishes binding and import. This region contains a sequence motif that is conserved among different precursor species. By constructing and testing mutants in the amino-terminal region of the mature part of the precursor protein, we found that this region of the molecule can greatly influence the import reaction.  相似文献   

8.
To study the effect of inserted peptides on the secretion and processing of exported proteins in Bacillus subtilis and Escherichia coli, pBR322-derived DNA fragments coding for small peptides were inserted between the DNA coding for the 31 amino acid B. subtilis alpha-amylase signal peptide and that coding for the mature part of the extracellular thermostable alpha-amylase of B. stearothermophilus. Most of the inserted peptides (21 to 65 amino acids) decreased the production of the enzyme in B. subtilis and E. coli, the effect of each peptide being similar in the two strains. In contrast, with one peptide (a 21 amino acid sequence encoded by the extra DNA in pTUBE638), the production of alpha-amylase was enhanced more than 1.7-fold in B. subtilis in comparison with that of the parent strain. The molecular masses of the thermostable alpha-amylases in the periplasm of the E. coli transformants varied for each peptide insert, whereas those in the culture supernatants of the B. subtilis transformants had molecular masses similar to that of the mature enzyme. Based on the NH2-terminal amino acid sequence of the hybrid protein from pTUBE638, it was shown that in E. coli, the NH2-terminally extended thermostable alpha-amylase was translocated and remained in the periplasm after the 31 amino acid signal sequence was removed. In the case of B. subtilis, after the removal of a 34-amino acid signal sequence, the hybrid protein was secreted and processed to the mature form.  相似文献   

9.
When the secreted bacterial protein ChiA is expressed in transgenic tobacco, a fraction of the protein is glycosylated and secreted from the plant cells; however most of the protein remains inside the cells. We tested whether the efficiency of secretion could be improved by replacing the bacterial signal sequence with a plant signal sequence. We found the signal sequence and the first two amino acids of the PR1b protein attached to the ChiA mature protein directs complete glycosylation and secretion of the ChiA from plant cells. Glycosylation of this protein is not required for its efficient secretion from plant cells.  相似文献   

10.
11.
The leucine-specific binding protein (LS-BP), a periplasmic component of the Escherichia coli high-affinity leucine transport system, is initially synthesized in a precursor form with a 23 amino acid N-terminal leader sequence that is removed during secretion of the protein into the periplasm. Using in vitro mutagenesis, deletion mutants of the LS-BP gene have been constructed with altered or missing amino acid sequences in the C-terminal portion of the protein. These altered binding proteins exhibited normal processing and secretion but were rapidly degraded in the periplasmic space. In the presence of an uncoupler of the transmembrane potential (CCCP) the precursor forms accumulated in the membrane and were protected from degradation. The altered binding proteins also were secreted by spheroplasts of E coli, after which they were easily detected.  相似文献   

12.
Summary Alkaline phosphatase (AP) is secreted into the medium when the carboxy-terminal 25 amino acids are replaced by the 60 amino acid carboxy-terminal signal peptide (HlyAs) ofEscherichia coli haemolysin (HlyA). Secretion of the AP-HlyAs fusion protein is dependent on HlyB and HlyD but independent of SecA and SecY. The efficiency of secretion by HlyB/HlyD is decreased when AP carries its own N-terminal signal peptide. Translocation of this fusion protein into the periplasm is not observed even in the absence of HlyB/HlyD. The failure of the Sec export machinery to transport the latter protein into the periplasm seems to be due in part to the loss of the carboxy-terminal sequence of AP since even AP derivatives which do not carry the HlyA signal peptide but lack the 25 C-terminal amino acids of AP are localized in the membrane but not translocated into the periplasm.  相似文献   

13.
Genetics of the iron dicitrate transport system of Escherichia coli.   总被引:43,自引:23,他引:20       下载免费PDF全文
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.  相似文献   

14.
Human interleukin-1 beta (IL-1 beta) is expressed in activated monocytes as a 31-kDa precursor protein which is processed and secreted as a mature, unglycosylated 17-kDa carboxyl-terminal fragment, despite the fact that it contains a potential N-linked glycosylation site near the NH2 terminus (-Asn7-Cys8-Thr9-). cDNA coding for authentic mature IL-1 beta was fused to the signal sequence from the Candida albicans glucoamylase gene, two amino acids downstream from the signal processing site. Upon expression in Saccharomyces cerevisiae, approximately equimolar amounts of N-glycosylated (22 kDa) and unglycosylated (17 kDa) IL-1 beta protein were secreted. The N-glycosylated yeast recombinant IL-1 beta exhibited a 5-7-fold lower specific activity compared to the unglycosylated species. The mechanism responsible for inefficient glycosylation was also studied. We found no differences in secretion kinetics or processing between the two extracellular forms of IL-1 beta. The 17-kDa protein, which was found to lack core sugars, does not result from deglycosylation of the 22-kDa protein in vivo and does not result from saturation of the glycosylation enzymatic machinery through overexpression. Alteration of the uncommon Cys8 residue in the -Asn-X-Ser/Thr-glycosylation site to Ser also had no effect. However, increasing the distance between Asn7 and the signal processing site increased the extent of core N-linked glycosylation, suggesting a reduction in glycosylation efficiency near the NH2 terminus.  相似文献   

15.
Propeptide of human protein C is necessary for gamma-carboxylation   总被引:7,自引:0,他引:7  
Protein C is one of a family of vitamin K dependent proteins, including blood coagulation factors and bone proteins, that contains gamma-carboxyglutamic acid. Sequence analysis of the cDNAs for these proteins has revealed the presence of a prepro leader sequence that contains a pre sequence or hydrophobic signal sequence and a propeptide containing a number of highly conserved amino acids. The pre region is removed from the growing polypeptide chain by signal peptidase, while the pro region is subsequently removed from the protein prior to secretion. In the present study, deletion mutants have been constructed in the propeptide region of the cDNA for human protein C, and the cDNAs were then expressed in mammalian cell culture. These deletions included the removal of 4, 9, 12, 15, 16, or 17 amino acids comprising the carboxyl end of the leader sequence of 42 amino acids. The mutant proteins were then examined by Western blotting, barium citrate adsorption and precipitation, amino acid sequence analysis, and biological activity and compared with the native protein present in normal plasma. These experiments have shown that protein C is readily synthesized in mammalian cell cultures, processed, and secreted as a two-chain molecule with biological activity. Furthermore, the pre portion or signal sequence in human protein C is 18 amino acids in length, and the pro portion of the leader sequence is 24 amino acids in length. Also, during biosynthesis and secretion, the amino-terminal region of the propeptide (residues from about -12 through -17) is important for gamma-carboxylation of protein C, while the present data and those of others indicate that the carboxyl-terminal portion of the propeptide (residues -1 through -4) is important for the removal of the pro leader sequence by proteolytic processing.  相似文献   

16.
Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function.  相似文献   

17.
In the secretion of polypeptides from Gram-negative bacteria, the outer membrane constitutes a specific barrier which has to be circumvented. In the majority of systems, secretion is two-step process, with initial export to the periplasm involving an N-terminal signal sequence. Transport across the outer membrane then involves a variable number of ancillary polypeptides including both periplasmic and outer membrane. While such ancillary proteins are probably specific for each secreted protein, the mechanism of movement across the outer membrane is unknown. In contrast to these systems, secretion of theE. coli hemolysin (HlyA) has several distinctive features. These include a novel targeting signal located within the last 50 or so C-terminal amino acids, the absence of any periplasmic intermediates in transfer, and a specific membrane-bound translocator, HlyB, with important mammalian homologues such as P-glycoprotein (Mdr) and the cystic fibrosis protein. In this review we discuss the nature of the HlyA targeting signal, the structure and function of HlyB, and the probability that HlyA is secreted directly to the medium through a trans-envelope complex composed of HlyB and HlyD.  相似文献   

18.
Extracellular secretion of the Serratia marcescens nuclease occurs in a two-step process: (i) rapidly to the periplasm via a signal sequence-dependent pathway and then (ii) slowly to the extracellular growth medium without cell lysis. There are two major isoforms of the nuclease in the culture supernatant of S. marcescens. We have isolated, purified, and determined the sequences of both isoforms. The first isoform, the mature nuclease (Sm2), is the result of signal sequence processing. The second isoform (Sm1) has three additional amino acids missing from the N terminus of the mature nuclease. Sm1 starts to appear extracellularly only during prolonged growth of a culture (16 to 48 h), probably because of cell lysis. However, pulse-chase experiments show that it is made early with Sm2 but is not secreted efficiently.  相似文献   

19.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

20.
A deletion mutation, malE delta 12-18, removes seven residues from the hydrophobic core of the maltose binding protein (MBP) signal peptide and thus prevents secretion of this protein to the periplasm of E. coli. Intragenic suppressor mutations of malE delta 12-18 have been obtained, some highly efficient in their ability to restore proper MBP export. Twelve independently isolated suppressors represent six unique mutational events. Five result in alterations within the MBP signal peptide; one changes the amino acid at residue 19 of the mature MBP. Analysis of these suppressors indicates that the length of the hydrophobic core is a major determinant of signal peptide function. The experiments further suggest that the hydrophobic core region serves primarily a structural role in mediating protein secretion, and that other sequences outside of this region may be responsible for providing the initial recognition of the MBP nascent chain as a secreted protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号