首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The distal regions of the photoreceptor microvilli of tipulid flies are shed to extracellular space during membrane turnover. Before abscission, the microvillar tips undergo a transformation: they become deformed, and after conventional fixation for electron microscopy are relatively electron-lucent compared to the stable, basal microvillar segments. We now show that the electron-lucent segment is an empty bag of membrane whose P-face after freeze-etch preparation appears as densely particulate as the remainder of the microvillus. Transformation is achieved by the local deletion of a microvillar cytoskeleton which consists of a single, axial filament linked to the plasma membrane by side-arms. The filament may be partially preserved by the chelation of Ca2+; the provision of a divalent cation (Mg2+ or Ba2+) stabilizes the side-arms during subsequent fixation, as has been shown previously for the rhabdomeral cytoskeleton of blowflies. Incubation of the isolated retina in the presence of 0.25 mM Ca2+ at room temperature for 10-20 min causes proteolysis of the cytoskeleton which is blocked by as little as 0.5 mM of the thiol protease inhibitors Ep-475 and Ep-459. Loss of the cytoskeleton is accompanied by deformation of all regions of the microvilli. Local deletion of the cytoskeleton from the transformed zone of the normal rhabdom is sufficient to explain deformation of the microvillar tips, but not their subsequent abscission. The intimate association between a Ca2+-activated thiol protease and the cytoskeleton implied by the great rapidity of proteolysis calls for a reassessment of published studies of membrane turnover by radioautography, and of the nature of light-induced damage to arthropod photoreceptor membranes.  相似文献   

2.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

3.
Treatment of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant tert-butylhydroperoxide (t-buOOH) increases Ca2++ATPase activity. The smooth muscle plasma membrane possesses a Ca2++ dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA and the tissue inhibitor of metalloprotease-2 (TIMP-2). Since 72 kDa is the molecular mass of MMP-2 and since in our present study the 72 kDa protease in the gelatin containing zymogram is inhibited by matrix metalloprotease inhibitors, EGTA and TIMP-2, it may be suggested that the 72 kDa protease is the MMP-2. In addition to the increasing Ca2++ATPase activity, t-buOOH also enhances the activity of the membrane associated Ca2++ dependent protease that degrades 14C-gelatin. The oxidant triggered protease activity and the Ca2++ATPase activity were found to be prevented by the antioxidant vitamin E, and also by the Ca2++ dependent matrix metalloprotease inhibitors: EGTA and TIMP-2. Adding MMP-2 to the smooth muscle plasma membrane suspension caused an increase in Ca2++ATPase activity and pretreatment with TIMP-2 prevents the increase in Ca2++ATPase activity. Combined treatment of the smooth muscle plasma membrane with low doses of MMP-2 and t-buOOH augments further the Ca2++ATPase activity caused by the respective doses of either t-buOOH or MMP-2. Pretreatment with TIMP-2 prevents the increase in Ca2++ATPase activity elicited by the low doses of MMP-2 and/or t-buOOH.  相似文献   

4.
Pretreatment of isolated rat liver plasma membranes by washing with NaHCO3 buffer or by exposure to the chelator ethyleneglycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) with or without the ionophore A23187, produced a decrease in the sensitivity of adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) to subsequent stimulation by NaF or guanosine 5′-(β-γ-imino)triphosphate (GPP(NH)P). Sensitivity to activation by the nucleotide could be restored by addition of the lyophilized and ashed wash or by addition of Ca2+, Mg2+ or Mn2+. The factor extracted from the membranes by these various treatments which was responsible for loss of stimulation was identified as Ca2+. Determination of the metal ion content of isolated membranes by atomic absorption spectrometry indicated that Ca2+ was the only divalent cation present in sufficient concentration to support persistent activation by either NaF or GPP(NH)P.Pretreatment of liver plasma membranes with trifluoperazine, which inhibits the action of Ca2+-dependent regulator protein in other enzyme systems, reduced GPP(NH)P activation of adenylate cyclase and caused marked depletion of membrane Ca2+. The effects of low concentrations (less than 100 μM) of the phenothiazine could be reversed totally by Ca2+ and partly by regulator protein. At higher concentrations of trifluoperazine, slight restoration of enzyme activation was seen with either agent. The hypothesis is presented that Ca+ interacts with the nucleotide (GTP or GDP) regulatory site(s) of the adenylate cyclase. This interaction may be regulator-protein-dependent and may be important in determining the sensitivity of the enzyme to nucleotide activation in vivo.  相似文献   

5.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   

6.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

7.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

8.
The characteristics of endogenous Ca2+/calmodulin (CaM)- and Ca2+/phosphatidylserine (PS)-stimulated phosphorylated proteins in the striatum of rat were partially determined and compared in this study. The Ca2+/CaM-dependent phosphoproteins were associated with serine and threonine residues. The sensitivity of these proteins for phosphorylation by Ca2+/CaM was not affected by pretreatment of tissue with Ca2+ chelating agent, EGTA or with non-ionic detergent, Triton X-114. Triton X-114 phase separation experiments revealed that these Ca2+/CaM-dependent phosphoproteins were partitioned in the detergent rich phase suggesting that they are integral proteins of the striatal membrane. On the other hand, the Ca2+/PS-dependent phosphorylated proteins were primarily associated with the serine residue. Phosphorylation of these proteins by Ca2+/PS were abolished after the treatment with EGTA or Triton X-114. These results suggest that Ca2+/PS-dependent striatal phosphoproteins are biochemically unstable in maintaining their state of phosphorylation.  相似文献   

9.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

10.
We show here that in rat diaphragm muscle, a short time of incubation with the Ca2+-ionophore A23187 induced an increase in cytoskeleton-bound phosphofructokinase (EC 2.7.1.11) and aldolase (EC 4.1.2.13), whereas a longer period of incubation, which causes a pathological rise in intracellular Ca2+, induced a decrease in bound enzymes. Lactate concentration correlated with both phases of Ca2+ action on the binding of the enzymes. The increase in cytoskeleton-bound enzymes could be prevented by treatment with the calmodulin antagonists trifluoperazine or CGS 9343B (a novel, potent, and selective inhibitor of calmodulin activity). These results suggest that calmodulin is involved in the Ca2+-induced binding of the enzymes to muscle cytoskeleton.  相似文献   

11.
Thyroliberin (TRH), dibutyryl cyclic AMP (db-cAMP), and 3-isobutyl-l-methylxanthine (MIX) had a stimulatory effect on prolactin (PRL) and growth hormone (GH) release from GH 3 cells. Half-maximal and maximal effects were observed for TRH at 2.5 nM and 10 nM; for db-cAMP at 0.6 mM and 5 mM, respectively. MIX (0.1 mM–1 mM) induced a dose-dependent accumulation of cellular cyclic AMP, while the hormone release was already maximally stimulated at 0.1 mM MIX. The maximal effects on hormone release of TRH and db-cAMP, but not of TRH and MIX, were additive.The Ca2+ channel blockers Co2+ (5 mM) and verapamil (100 M) and the Ca2+ chelator EGTA (4 mM) abolished the stimulatory effect of TRH (1 M) on hormone release. Co2+ and verapamil, but not EGTA, inhibited the stimulatory effect of db-cAMP (5 mM) on hormone release. The inhibitory effects of Co2+ and verapamil on GH release were counteracted by the combination of TRH and db-cAMP. For PRL release Co2+, but not verapamil, was able to inhibit the combined action of TRH and db-cAMP. Co2+, verapamil, and EGTA eliminated the stimulatory effect of MIX (1 mM) on PRL release while only Co2+ and EGTA affected the GH release. Hormone release in the presence of MIX plus verapamil or EGTA, but not Co2+, was increased by TRH.The calmodulin antagonist trifluoperazine (TFP) at 30 M inhibited basal hormone release and hormone release stimulated by TRH (1 M), db-cAMP (5 mM), and MIX (1 mM). The Ca2+ ionophore A23187 (5 M) had a stimulatory effect on basal hormone release which was abolished by 30 M TFP.  相似文献   

12.
Summary Intracellular Ca2+ has been suggested to play an important role in the regulation of epithelial Na+ transport. Previous studies showed that preincubation of toad urinary bladder, a tight epithelium, in Ca2+-free medium enhanced Na+ uptake by the subsequently isolated apical membrane vesicles, suggesting the downregulation of Na+ entry across the apical membrane by intracellular Ca2+. In the present study, we have examined the effect of Ca2+-free preincubation on apical membrane Na+ transport in a leaky epithelium, i.e., brush border membrane (BBM) of rabbit renal proximal tubule. In contrast to toad urinary bladder, it was found that BBM vesicles derived from proximal tubules incubated in 1mm Ca2+ medium exhibited higher Na+ uptake than those derived from proximal tubules incubated in Ca2+-free EGTA medium. Such effect of Ca2+ in the preincubation medium was temperature dependent and could not be replaced by another divalent cation, Ba2+ (1mm). Ca2+ in the preincubation medium did not affect Na+-dependent BBM glucose uptake, and its effect on BBM Na+ uptake was pH gradient dependent and amiloride (10–3 m) sensitive, suggesting the involvement of Na+/H+ antiport system. Addition of verapamil (10–4 m) to 1mm Ca2+ preincubation medium abolished while ionomycin (10–6 m) potentiated the effect of Ca2+ to increase BBM Na+ uptake, suggesting that the effect of Ca2+ in the preincubation medium is likely to be mediated by Ca2+-dependent cellular pathways and not due to a direct effect of extracellular Ca2+ on BBM. Neither the proximal tubule content of cAMP nor the inhibitory effect of 8, bromo-cAMP (0.1mm) on BBM Na+ uptake was affected by the presence of Ca2+ in the preincubation medium, suggesting that Ca2+ in the preincubation medium did not increase BBM Na+ uptake by removing the inhibitory effect of cAMP. Addition of calmodulin inhibitor, trifluoperazine (10–4 m) to 1mm Ca2+ preincubation medium did not prevent the increase in BBM Na+ uptake. The effect of Ca2+ was, however, abolished when protein kinase C in the proximal tubule was downregulated by prolonged (24 hr) incubation with phorbol 12-myristate 13-acetate (10–6 m). In summary, these results show the Ca2+ dependency of Na+ transport by renal BBM, possibly through stimulation of Na+/H+ exchanger by protein kinase C.  相似文献   

13.
The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of Ca2+-ATPase present in the plasma membrane, the outer acrosome membrane and the outer mitochondrion membrane resulting in Ca2+ accumulation in the cytoplasm, which in turn blocks further Ca2+ entry through some negative feedback mechanism(s). The inhibitory effect of Ca2+-ATPase antagonist on glycolytic activity may also be the reason for Ca2+ accumulation in cytoplasm and inhibition of Ca2+ uptake.  相似文献   

14.
The influence of the neuroleptic trifluoperazine on the intracellular concentration of Ca2+ in macrophages of rats was studied using a Fura-2AM fluorescent Ca2+ probe. It was found that trifluoperazine causes a dose-dependent increase in the intracellular Ca2+ concentration associated with Ca2+ mobilization from intracellular Ca2+ stores and subsequent entry of Ca2+ into peritoneal macrophages of rats. It was also shown that inhibitors of phospholipase A2 (4-bromophenacyl bromide, prednisolone, and dexamethasone), cyclooxygenases (aspirin and indomethacin), and lipoxygenases (caffeic acid, zileuton, and baicalein) suppress Ca2+ responses induced by trifluoperazine in macrophages. The data obtained indicate the participation of enzymes and/or products of the cascade of arachidonic acid metabolism in the influence of trifluoperazine on the intracellular concentration of Ca2+ in peritoneal macrophages.  相似文献   

15.
The goat spermatozoa membranes isolated after treatment with octa (ethylene glycol) mono n-dodecyl ether (C12E8) followed by discontinuous sucrose density gradient centrifugation have been found to contain an ATPase that is stimulated by externally added Ca2+ only. The membrane fraction has also found to contain Mg2+-dependent Ca2+-ATPase activity, however the former activity is about 2 fold higher than the latter. The molecular weight of the enzyme is found to be about 97,000 on SDS-polyacrylamide gel. The optimum concentration of Ca2+ required for maximum activity is 3 mM for both Mg2+-dependent and Mg2+-independent Ca2+-ATPase. Histidine and imidazole buffers are found to be the most suitable for dependent and independent enzyme activities respectively. ATP with an optimum concentration of 4 mM is observed to be the best substrate than any other nucleotides. The inhibitors like trifluoperazine and vanadate and group specific probes e.g. DTNB and TNBS inhibit these two enzymes but at different rates. Ca2+-uptake study shows that the uptake in the presence of Ca2+ and ATP is higher than in the presence of Mg2+, Ca2+ and ATP. The findings lead us to believe that the Mg2+-independent Ca2+-ATPase has some role in Ca2+ transport like Mg2+-dependent enzyme.Abbreviations Tris Tris (hydroxymethyl) amino ethane - Hepes-N 2-hydroxy ethyl piperizine-N1-2-ethane sulfonic acid - Pipes-Piperizine-N N1-bis(2-ethane sulfonic acid) - EGTA Ethylene Glycol-bis (-amino ethyl ether) - N, N, N1, N1 Tetraacetic Acid, sodium salt - TFP Trifluoperazine - DTNB 5,51 Dithiobis (2 nitrobenzoic acid) - TNBS 2, 4, 6-Trinitrobenzene Sulfonate - C12E8 Octa (ethylene glycol) mono n-dodecyl ether - PMSF Phenylmethyl Sulfonyl Fluoride - PAGE Polyacrylamide Gel Electrophoresis - PME -Mercapto Ethanol  相似文献   

16.
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, ISOC. Indeed, ISOC is a relatively small inward Ca2+ current that exhibits an approximate +40 mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of ISOC, although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of ISOC requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4–protein 4.1 physical linkage regulates ISOC activation following Ca2+ store depletion.  相似文献   

17.
Summary The roles that Ca2+, calmodulin, and ATP play in the redistribution of conconavalin A (Con A) binding sites on the surface of mouse T-lymphoma cells were examined. Membranes of cells labeled with fluorescein-conjugated Con A (Fl-Con A) were made permeable (skinned) to ions and proteins by incubation in a solution containing no added Ca2+, 7mm EGTA, and ATP. The intracellular ionic and protein concentrations could then be varied, and the degree of Con A receptor capping monitored simultaneously. A graded increase (9.0 to 30%) was found in the number of capped cells with increasing Ca2+ concentration from 10–6–10–4.9 m. Increasing concentrations of trifluoperazine, chlorpromazine, and promethazine (1.5×10–6 to 1.0×10–4 m) in cell suspensions containing 10–4 m Ca2+ produced graded inhibition of capping in the same order that the drugs bind to calmodulin. Removal of extracellular Ca2+ dissociated (reversed) some of the caps into patches, thus reducing their number (12%). ATP was required for either capping or cap dissociation to occur. Addition of calmodulin (3.9×10–8–6.3×10–7 m) to the cell suspension increased the Ca2+ sensitivity. These results provide direct evidence that capping of Con A receptors is a reversible process (i) regulated by intracellular Ca2+ concentration, (ii) requiring ATP as an energy source, and (iii) susceptible to the influence of calmodulin. These findings are consistent with the hypothesis that the collection of surface receptor patches into cap structures is controlled by the interaction of actomyosin filaments, which in turn is regulated by a Ca2+-calmodulin-activated control system.  相似文献   

18.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

19.
The concentration of kinetin and kinetinriboside plays an essential role in the induction of amaranthin accumulation in cotyledons ofAmaranthus tricolor during germination. The dose/effect ratio shows that kinetin induced 3- to 3.5-fold more amaranthin than kinetinriboside at the same molecular concentration. Various concentrations of exogenous Ca2+ did not influence the effects of kinetin on the betacyanin synthesis. However, when Ca2+ was applied together with kinetinriboside, the amaranthin production was stimulated. Time-course experiments show a lag phase of 16 h starting from the incubation with kinetin and a distinct increase of amaranthin thereafter. If the seedlings were treated simultaneously with kinetin and Ca2+, the increase of amaranthin started after 12 h. At 16 h of incubation in kinetin/Ca2+, the amount of amaranthin increased significantly compared to controls incubated with kinetin alone. If Ca2+ ions (16 h kinetin/Ca2+ incubation) were removed from the medium after 2 h, 4 h, and up to 14 h, the amaranthin content was enhanced compared to controls without Ca2+. The stimulating effect was highest in the presence of Ca2+ for 8 h. These data show that exogenous Ca2+ stimulated the amaranthin synthesis mainly during the first 12 h of incubation. The Ca2+ antagonists EGTA, chlorotetracycline, and CoCl2 reduced the amaranthin content up to 80%. The calmodulin antagonists chloropromazine and trifluoperazine inhibited the betacyanin accumulation up to 97% when applied at the beginning of the incubation. Neither Co2+ nor trifluoperazine after 12 h of preincubation in kinetin had inhibiting effects on the amaranthin production. Therefore, we presume that a specific period of competence is required for calmodulin-mediated Ca2+ effects on the accumulation of amaranthin induced by cytokinins in the seedlings ofAmaranthus tricolor.  相似文献   

20.
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号