首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal B-cell activation is a characteristic feature of AIDS and of the AIDS-related complex. Since the immunoregulatory cytokine interleukin-6 (IL-6) plays a major role in inducing B-cell differentiation, we examined the effects of native human immunodeficiency virus type 1 envelope glycoproteins gp120 and gp160 on IL-6 induction. In this study, we have demonstrated that both gp120 and gp160 have the ability to induce IL-6 mRNA and biologically active IL-6 protein secretion in peripheral blood mononuclear cells in vitro. The envelope protein preparations had no detectable endotoxin as tested by the Limulus amebocyte lysate assay, and hence we can rule out the effect of contaminating endotoxin, which is a potent inducer of IL-6 in monocyte/macrophage cell cultures. In addition, we have shown that the envelope glycoproteins act directly on CD4(+)-cloned T cells to induce IL-6 production in the absence of monocytes. These findings indicate that monocytes and T cells both contribute to the secretion of IL-6, which plays an important role in the pathogenesis of B-cell activation in human immunodeficiency virus infection.  相似文献   

2.
The pathogenicity of four human immunodeficiency virus type 1 (HIV-1) isolates with nef deleted for SCID mice repopulated with human peripheral blood leukocytes (hu-PBL-SCID mice) was studied. Deletion of nef led to a substantial reduction in CD4-positive T-cell depletion and delayed kinetics of plasma viremia in infected hu-PBL-SCID mice. Deletion of the nef gene impacts both the efficiency of primary infection and the cytopathicity of virus for infected CD4-positive T cells in this animal model of HIV-1 infection.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

4.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

5.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

6.
Mutant gp120 glycoproteins exhibiting a range of affinities for CD4 were tested for ability to form syncytia and to complement an env-defective provirus for replication. Surprisingly, gp120 mutants that efficiently induced syncytia and/or complemented virus replication were identified that exhibited marked (up to 50-fold) reductions in CD4-binding ability. Temperature-dependent changes in gp120, which result in a seven- to ninefold increase in affinity for CD4, were shown not to be necessary for subsequent membrane fusion or virus entry events. Mutant glycoproteins demonstrating even relatively small decreases in CD4-binding ability exhibited reduced sensitivity to soluble CD4. The considerable range of CD4-binding affinities tolerated by replication-competent HIV-1 variants has important implications for antiviral strategies directed at the gp120-CD4 interaction.  相似文献   

7.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

8.
Using recombinant and mutant viruses generated between two human immunodeficiency virus type 1 isolates that display differences in cell tropism and sensitivity to soluble CD4 neutralization, we show that these two properties of the virus are regulated by different mechanisms. Whereas there is an association between V3 loop conformation and a particular cellular tropism, soluble CD4 neutralization sensitivity appears to be determined by amino acid differences in the C2 domain of the envelope gp120 that modulate the stability of gp120-gp41 association. Our findings further illustrate the importance of functional interactions among different regions of the envelope gp120 in regulating the biological phenotypes of human immunodeficiency virus and suggest that additional probing of the V3 loop with monoclonal antibodies may identify specific structural features of this loop that determine cell tropism.  相似文献   

9.
We previously showed that the envelope glycoprotein from an in vitro microglia-adapted human immunodeficiency virus type 1 isolate (HIV-1(Bori-15)) is able to use lower levels of CD4 for infection and demonstrates greater exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody than the envelope of its parental, peripheral isolate (HIV-1(Bori)). We investigated whether these phenotypic changes were related to a different interaction of their soluble monomeric gp120 proteins with CD4 or 17b. Equilibrium binding analyses showed no difference between Bori and Bori-15 gp120s. However, kinetic analysis of surface plasmon resonance-based, real-time binding experiments showed that while both proteins have similar association rates, Bori-15 gp120 has a statistically significant, 3-fold-lower dissociation rate from immobilized CD4 than Bori and a statistically significant, 14-fold-lower dissociation rate from 17b than Bori in the absence of soluble CD4. In addition, using the sensitivity to inhibition by anti-CD4 antibodies as a surrogate for CD4:trimeric envelope interaction, we found that Bori-15 envelope-pseudotyped viruses were significantly less sensitive than Bori pseudotypes, with four- to sixfold-higher 50% inhibitory concentration values for the three anti-CD4 antibodies tested. These differences, though small, suggest that adaptation to microglia correlates with the generation of a gp120 that forms a more stable interaction with CD4. Nonetheless, the observation of limited binding changes leaves open the possibility that HIV-1 adaptation to microglia and HIV-associated dementia may be related not only to diminished CD4 dependence but also to changes in other molecular factors involved in the infection process.  相似文献   

10.
The envelope (env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) determines several viral properties (e.g., coreceptor usage, cell tropism, and cytopathicity) and is a major target of antiviral immune responses. Most investigations on env have been conducted on subtype-B viral strains, prevalent in North America and Europe. Our study aimed to analyze env genes of subtype-E viral strains, prevalent in Asia and Africa, with a nonhuman primate model for lentivirus infection and AIDS. To this end, we constructed a simian immunodeficiency virus/HIV-1 subtype-E (SHIV) recombinant clone by replacing the env ectodomain of the SHIV-33 clone with the env ectodomain from the subtype-E strain HIV-1(CAR402), which was isolated from an individual in the Central African Republic. Virus from this recombinant clone, designated SHIV-E-CAR, replicated efficiently in macaque peripheral blood mononuclear cells. Accordingly, juvenile macaques were inoculated with cell-free SHIV-E-CAR by the intravenous or intravaginal route; virus replicated in these animals but did not produce hematological abnormalities. In an attempt to elicit the pathogenic potential of the recombinant clone, we serially passaged this viral clone via transfusion of blood and bone marrow through juvenile macaques to produce SHIV-E-P4 (fourth-passage virus). The serially passaged virus established productive infection and CD4(+) T-cell depletion in juvenile macaques inoculated by either the intravenous or the intravaginal route. Determination of the coreceptor usage of SHIV-E-CAR and serially passaged SHIV-E-P4 indicated that both of these viruses utilized CXCR4 as a coreceptor. In summary, the serially passaged SHIV subtype-E chimeric virus will be important for studies aimed at developing a nonhuman primate model for analyzing the functions of subtype-E env genes in viral transmission and pathogenesis and for vaccine challenge experiments with macaques immunized with HIV-1 env antigens.  相似文献   

11.
Human immunodeficiency virus (HIV)-specific CD4 T-cell responses, particularly to the envelope glycoproteins of the virus, are weak or absent in most HIV-infected patients. Although these poor responses can be attributed simply to the destruction of the specific CD4 T cells by the virus, other factors also appear to contribute to the suppression of these virus-specific responses. We previously showed that human monoclonal antibodies (MAbs) specific for the CD4 binding domain of gp120 (gp120(CD4BD)), when complexed with gp120, inhibited the proliferative responses of gp120-specific CD4 T-cells. MAbs to other gp120 epitopes did not exhibit this activity. The present study investigated the inhibitory mechanisms of the anti-gp120(CD4BD) MAbs. The anti-gp120(CD4BD) MAbs complexed with gp120 suppressed gamma interferon production as well as proliferation of gp120-specific CD4 T cells. Notably, the T-cell responses to gp120 were inhibited only when the MAbs were added to antigen-presenting cells (APCs) during antigen pulse; the addition of the MAbs after pulsing caused no inhibition. However, the anti-gp120(CD4BD) MAbs by themselves, or as MAb/gp120 complexes, did not affect the presentation of gp120-derived peptides by the APCs to T cells. These MAb/gp120 complexes also did not inhibit the ability of APCs to process and present unrelated antigens. To test whether the suppressive effect of anti-gp120(CD4BD) antibodies is caused by the antibodies' ability to block gp120-CD4 interaction, APCs were treated during antigen pulse with anti-CD4 MAbs. These treated APCs remained capable of presenting gp120 to the T cells. These results suggest that anti-gp120(CD4BD) Abs inhibit gp120 presentation by altering the uptake and/or processing of gp120 by the APCs but their inhibitory activity is not due to blocking of gp120 attachment to CD4 on the surface of APCs.  相似文献   

12.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

13.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

14.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

15.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

16.
The relative infectiousness of laboratory and primary human immunodeficiency virus type 1 (HIV-1) variants was evaluated in in vitro cell cultures of peripheral blood mononuclear cells or MT-2 cells and in Hu-PBL-SCID mice. HIV(MN) and syncytium-inducing primary isolates were preferentially transmitted to cells in tissue culture. HIV(Ba-L) and non-syncytium-inducing (NSI) primary isolates were more infectious in Hu-PBL-SCID mice. Phylogenetic analysis of env sequences derived from the primary isolates, from the cell cultures, and from five Hu-PBL-SCID mice was performed by using methods designed for resolving differences among closely related sequence pairs. This analysis demonstrated preferential transmission of an evolutionarily related subset of NSI variants to Hu-PBL-SCID mice. The pattern of selective transmission of a restricted range of NSI variants that is observed in the clinical setting is maintained in Hu-PBL-SCID mice and not in tissue culture systems. The Hu-PBL-SCID mouse model system, when used with appropriate phylogenetic analysis methodologies, will be useful for identifying and characterizing the more infectious HIV-1 variants that should be targeted for vaccine development.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

18.
We have compared the expression of full-length gp160 envelope protein from human immunodeficiency virus type 1 with that of a deletion mutant lacking the N-terminal 31 amino acids of the mature protein (gp160 delta 32). The gp160 and gp160 delta 32 proteins are processed to yield gp41 and gp120 or gp120 delta 32, respectively. In contrast to full-length gp120, gp120 delta 32 failed to associate with gp41 at the cell surface, despite conformational integrity as judged by soluble CD4 binding. Thus, the N-terminal 31 amino acids of gp120, which contain hyperconserved sequences, are likely involved in forming a contact site for gp41.  相似文献   

19.
Wang X  Uto T  Akagi T  Akashi M  Baba M 《Journal of virology》2007,81(18):10009-10016
The mainstream of recent anti-AIDS vaccines is a prime/boost approach with multiple doses of the target DNA of human immunodeficiency virus type 1 (HIV-1) and recombinant viral vectors. In this study, we have attempted to construct an efficient protein-based vaccine using biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs), which are capable of inducing potent cellular immunity. A significant expansion of CD8+ T cells specific to the major histocompatibility complex class I-restricted gp120 epitope was observed in mice intranasally immunized once with gp120-carrying NPs but not with gp120 alone or gp120 together with the B-subunit of cholera toxin. Both the gp120-encapsulating and -immobilizing forms of NPs could induce antigen-specific spleen CD8+ T cells having a functional profile of cytotoxic T lymphocytes. Long-lived memory CD8+ T cells could also be elicited. Although a substantial decay in the effector memory T cells was observed over time in the immunized mice, the central memory T cells remained relatively constant from day 30 to day 238 after immunization. Furthermore, the memory CD8+ T cells rapidly expanded with boosting with the same immunogen. In addition, gamma-PGA NPs were found to be a much stronger inducer of antigen-specific CD8+ T-cell responses than nonbiodegradable polystyrene NPs. Thus, gamma-PGA NPs carrying various HIV-1 antigens may have great potential as a novel priming and/or boosting tool in current vaccination regimens for the induction of cellular immune responses.  相似文献   

20.
The effects of recombinant gp120 on the proliferative responses and cytokine production by normal peripheral blood mononuclear cells (PBMC) were investigated. gp120 inhibited in a dose-dependent fashion the anti-CD3 monoclonal antibody (MAb)- and concanavalin A-induced proliferative responses. The production of interleukin-2 (IL-2) and IL-4 was diminished by gp120 in the anti-CD3- and concanavalin A-stimulated cultures. In unstimulated PBMC, gp120 induced the production of considerable amounts of IL-10, gamma interferon, and tumor necrosis factor alpha. The gp120-induced reduction in the proliferative responses of PBMC was at least partially reversed by the addition of IL-2, anti-CD28 MAb, or transfectants expressing CD80, CD86, or CD40 but not with exogenous IL-4. Also, a neutralizing anti-IL-10 MAb reversed the inhibitory effect of gp120 on the proliferative responses whereas exogenous IL-10 further enhanced this inhibitory effect. These findings indicate that IL-10 plays an important role in the inhibitory effect of gp120 on PBMC proliferation. The ratio of CD3+CD4+ to CD3+CD8+ T cells was the same in gp120-treated and untreated cell cultures. No apoptosis in these two T-cell populations was observed. However, the number of activated CD3+CD4+ T cells and CD3+CD8+ T cells, as judged by CD25, CD69, and HLA-DR expression, was consistently reduced. gp120 induced the expression of IL-10 in the monocyte/macrophage population, and therefore gp120 also reduced the proliferative responses of CD4+ T-cell-depleted PBMC. Taken together, our observations point to the importance of the cytokine pattern changes and, in particular, the role of IL-10 (produced by the monocytes) in the inhibitory effect of gp120. This mechanism of gp120-induced immunosuppression, if operative in vivo, could contribute to the depressed immune responses associated with human immunodeficiency virus infection and thus have important implications for immunotherapeutic strategies to slow down disease progression in AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号