首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Cellulose, whose production is controlled by c-di-GMP, is a commonly found exopolysaccharide in bacterial biofilms. Pseudomonas syringae pv. tomato (Pto) DC3000, a model organism for molecular studies of plant–pathogen interactions, carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose. The high intracellular levels of the second messenger c-di-GMP induced by the overexpression of the heterologous diguanylate cyclase PleD stimulate cellulose production and enhance air–liquid biofilm (pellicle) formation. To characterize the mechanisms involved in Pto DC3000 pellicle formation, we studied this process using mutants lacking flagella, biosurfactant or different extracellular matrix components, and compared the pellicles produced in the absence and in the presence of PleD. We have discovered that neither alginate nor the biosurfactant syringafactin are needed for their formation, whereas cellulose and flagella are important but not essential. We have also observed that the high c-di-GMP levels conferred more cohesion to Pto cells within the pellicle and induced the formation of intracellular inclusion bodies and extracellular fibres and vesicles. Since the pellicles were very labile and this greatly hindered their handling and processing for microscopy, we have also developed new methods to collect and process them for scanning and transmission electron microscopy. These techniques open up new perspectives for the analysis of fragile biofilms in other bacterial strains.  相似文献   

4.
5.
6.
7.
Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that translocates virulence effector proteins into host cells via a type III secretion system (T3SS). Many effector-encoding hypersensitive response and pathogenicity (Hrp) outer protein (hop) genes have been identified previously in DC3000 using bioinformatic methods based on Hrp promoter sequences and characteristic N-terminal amino acid patterns that are associated with T3SS substrates. To approach completion of the Hop/effector inventory in DC3000, 44 additional candidates were tested by the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter assay; 10 of the high-probability candidates were confirmed as T3SS substrates. Several previously predicted hop genes were tested for their ability to be expressed in an HrpL-dependent manner in culture or to be expressed in planta. The data indicate that DC3000 harbors 53 hop/avr genes and pseudogenes (encoding both injected effectors and T3SS substrates that probably are released to the apoplast); 33 of these genes are likely functional in DC3000, 12 are nonfunctional members of valid Hop families, and 8 are less certain regarding their production at functional levels. Growth of DC3000 in tomato and Arabidopsis Col-0 was not impaired by constitutive expression of repaired versions of two hops that were disrupted naturally by transposable elements or of hop genes that are naturally cryptic. In summary, DC3000 carries a complex mixture of active and inactive hop genes, and the hop genes in P. syringae can be identified efficiently by bioinformatic methods; however, a precise inventory of the subset of Hops that are important in pathogenesis awaits more knowledge based on mutant phenotypes and functions within plants.  相似文献   

8.
Pseudomonas syringae pv. tomato DC3000 contains genes for 15 sigma factors. The majority are members of the extracytoplasmic function class of sigma factors, including five that belong to the iron starvation subgroup. In this study, we identified the genes controlled by three iron starvation sigma factors. Their regulons are composed of a small number of genes likely to be involved in iron uptake.  相似文献   

9.
10.
Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole compounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each psU3S molecule consists of two domains interlinked by a two-stranded antiparallel β-sheet. The conformation of psU3S is different from its homologous proteins because of the flexibility of the linker between the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme. Our results provide the structural basis and biochemical evidence to further elucidate the catalytic mechanism of U3S.  相似文献   

11.
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.  相似文献   

12.
Type III secretion systems are highly conserved among gram-negative plant and animal pathogenic bacteria. Through the type III secretion system, bacteria inject a number of virulence proteins into the host cells. Analysis of the whole genome sequence of Pseudomonas syringae pv. tomato DC3000 strain identified a locus, named HopPtoF, that is homologous to the avirulence gene locus avrPphF in P. syringae pv. phaseolicola. The HopPtoF locus harbors two genes, ShcF(Pto) and HopF(Pto), that are preceded by a single hrp box promoter. We present evidence here to show that ShcF(Pto) and HopF(Pto) encode a type III chaperone and a cognate effector, respectively. ShcF(Pto) interacts with and stabilizes the HopF(Pto) protein in the bacterial cell. Translation of HopF(Pto) starts at a rare initiation codon ATA that limits the synthesis of the HopF(Pto) protein to a low level in bacterial cells.  相似文献   

13.
14.
The relationships among strains of Pseudomonas syringae pv. tomato, Ps. syr. antirrhini, Ps. syr. maculicola, Ps. syr. apii and a strain isolated from squash were examined by restriction fragment length polymorphism (RFLP) patterns, nutritional characteristics, host of origin and host ranges. All strains tested except for Ps. syr. maculicola 4326 isolated from radish ( Raphanus sativus L.) constitute a closely related group. No polymorphism was seen among strains probed with the 5.7 and 2.3 kb Eco RI fragments which lie adjacent to the hrp cluster of Ps. syr. tomato and the 8.6 kb Eco RI insert of pBG2, a plasmid carrying the β-glucosidase gene(s). All strains tested had overlapping host ranges. In contrast to this, comparison of strains by RFLP patterns of sequences homologous to the 4.5 kb Hind III fragment of pRut2 and nutritional properties distinguished four groups. Group 1, consisting of strains of pathovars maculicola, tomato and apii , had similar RFLP patterns and used homoserine but not sorbitol as carbon sources. Group 2, consisting of strains of pathovars maculicola and tomato , differed from Group 1 in RFLP patterns and did not use either homoserine or sorbitol. Group 3 was similar to Group 2 in RFLP patterns but utilized homoserine and sorbitol. This group included strains of the pathovars tomato and antirrhini , and a strain isolated from squash. Group 4, a single strain of Ps. syr. maculicola isolated from radish, had unique RFLP patterns and resembled Group 3 nutritionally. The evolutionary relationships of these strains are discussed.  相似文献   

15.
16.
17.
18.
Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the "hrp box") in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp-inducing minimal medium than in nutrient-rich Luria-Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS-regulated novel genes encode putative effector proteins.  相似文献   

19.
Amino acid metabolic pathways are involved in the plant immune system. Pipecolic acid (Pip), a lysine-derived non-protein amino acid, acts as an important regulator of disease resistance. Here, we report the functions of Pip on tomato disease resistance. Tomato seedlings treated with 0.5 mM Pip showed increased resistance to Pst DC3000 and B. cinerea compared with the control. After pathogen infection, the expression of defence-related genes increased in plants pretreated with Pip, while reactive oxygen species (ROS) accumulation decreased. These data demonstrated that exogenous application of Pip induced resistance against Pst DC3000 and B. cinerea in tomatoes, possibly through the regulation of ROS accumulation and defence-related gene expression.  相似文献   

20.
Chemotaxis by Pseudomonas syringae pv. tomato   总被引:1,自引:0,他引:1       下载免费PDF全文
Optimal laboratory conditions for studying chemotaxis by Pseudomonas syringae pv. tomato were determined by using the Adler capillary tube assay. Although they are not an absolute requirement for chemotaxis, the presence of 0.1 mM EDTA and 1 mM MgCl2 in the chemotaxis buffer (10 mM potassium phosphate [pH 7.2]) significantly enhanced the response to attractant. The addition of mannitol as an energy source had little effect. The optimal temperature for chemotaxis was 23°C, which is 5°C below the optimal growth temperature for this pathogen. The best response occurred when the bacteria were exposed to attractant for 60 min at a concentration of approximately 5 × 106 CFU/ml. P. syringae pv. tomato was strongly attracted to citric and malic acids, which are the predominant organic acids in tomato fruit. With the exception of asparagine, the major amino acids of tomatoes were weak to moderate attractants. Glucose and fructose, which account for approximately 47% of tomato dry matter, also elicited poor responses. In assays with tomato intercellular fluid and leaf surface water, the bacterial speck pathogen could not chemotactically distinguish between a resistant and a susceptible cultivar of tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号