首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Bay K 8644 on the electrical activity of the smooth muscle cells in the main pulmonary artery of the rabbit was examined. In normal physiological solution, the resting membrane potential was -56 +/- 0.6 mV, and the cells were electrically quiescent. Tetraethylammonium (5 mM) depolarized the membrane to about -45 mV, and electrical stimulation elicited action potentials. To suppress contractile responses and thereby facilitate sustained impalements, the muscle strips were bathed with a hypertonic solution containing sucrose. The mean amplitude of the tetraethylammonium-induced action potentials in the hypertonic solution was 35 +/- 0.9 mV. The action potentials were dependent upon the extracellular Ca2+ concentration and were abolished by diltiazem (10(-6) M). Spontaneous action potentials were occasionally generated in the presence of tetraethylammonium alone and could be induced by the further addition of Ba2+ (0.5 mM). The Ca2+ agonist Bay K 8644 (10(-8) to 10(-6) M) had no effect on the resting membrane potential or excitability in normal solution. However, in the hypertonic solution containing tetraethylammonium, Bay K 8644 caused a further depolarization and oscillatory potential changes, which were not prevented by tetrodotoxin. The oscillations were suppressed or abolished by diltiazem or nilvadipine. Thus, active responses can occur in the normally quiescent smooth muscle cells of the rabbit pulmonary artery when the outward K+ current(s) are suppressed.  相似文献   

2.
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D-glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442-444). The forskolin-stimulated spike rate decreased when l-cis-diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4-aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.  相似文献   

3.
Ward SM  Kenyon JL 《Cell calcium》2000,28(4):233-246
In order to learn about the endogenous Ca2+-buffering in the cytoplasm of chick dorsal root ganglion (DRG) neurons and the distance separating the ryanodine receptor Ca2+ release channels (RyRs) from the plasma membrane, we monitored the amplitude and time course of Ca2+-activated Cl- currents (I(ClCa)) in protocols that manipulated Ca2+-buffering. I(ClCa)was activated by Ca2+ influx via voltage-gated Ca2+ channels or by Ca2+ release via RyRs activated by 10 mM caffeine. I(ClCa)was measured in neurons at 20 degrees C and 35 degrees C using the amphotericin perforated patch technique that preserves endogenous Ca2+-buffering, or at 20 degrees C in neurons dialyzed with pipette solutions designed to replace the endogenous Ca2+ buffers. The amplitude of I(ClCa)activated by Ca2+ influx or Ca2+ at 20 degrees C was similar in the amphotericin neurons and neurons dialyzed with an 'unbuffered' pipette solution containing 10 mM citrate and 3 mM ATP as the only Ca2+ binding molecules. Thus, endogenous mobile Ca2+ buffers are relatively unimportant in chick DRG neurons. Warming the neurons from 20 degrees C to 35 degrees C increased the amplitude and the rate of deactivation of I(ClCa)consistent with an increased rate of Ca2+ buffering by fixed endogenous Ca2+-buffers. Dialysis with 2 mM EGTA/0.1 microM free Ca2+ reduced the amplitude and increased the rate of deactivation of I(ClCa)activated by Ca2+ influx and abolished I(ClCa)activated by Ca2+ release. Dialysis with 2 mM BAPTA/0.1 microM free Ca2+ abolished I(ClCa)activated by Ca2+ influx or release. Dialysis with 42 mM HEEDTA/0.5 microM free Ca2+ caused the persistent activation of I(ClCa). Calculations using a Ca2+-diffusion model suggest that the voltage-gated Ca2+ channels and the Ca2+-activated Cl- channels are separated by 50-400 nm and that the RyRs are more than 600 nm from the plasma membrane.  相似文献   

4.
We report efficient two-photon and UV-laser flash photolysis of dimethoxynitrophenyl-EGTA-4 (DMNPE-4), a newly-developed photolabile Ca(2+)-specific chelator. This compound exhibits good two-photon absorption at 705 nm, has a low Mg2+ affinity (approximately 7 mM), a Kd for Ca2+ of 19 nM, a quantum yield of 0.20 and changes its Ca2+ affinity by 21,000-fold upon photolysis. Two-photon excitation photolysis (TPP) experiments were performed with a Ti:Sapphire laser in solutions containing DMNPE-4 with either 0 or 10 mM Mg2+ and compared to that of the widely used Ca2+ cage, DM-nitrophen (Kd for Ca2+ 5 nM, Kd for Mg2+ 2.5 microM, quantum yield 0.18, affinity change 600,000-fold). The resulting Ca2+ signals were recorded with the fluorescent Ca2+ indicator fluo-3 and a laser-scanning confocal microscope in the line-scan mode. In vitro, photolysis of DMNPE-4:Ca2+ produced Ca(2+)-release signals that had comparable amplitudes and time courses in the presence and absence of Mg2+. However, photorelease of Ca2+ from DM-nitrophen was obviated by the presence of Mg2+. In patch-clamped isolated cardiac myocytes, equivalent TPP results were obtained in analogous experiments. Single-photon excitation of DMNPE-4 by Nd:YAG laser flashes produced Na-Ca exchange currents of comparable amplitude in the absence and presence of Mg2+. However, only very small currents were observed in DM-nitrophen solution containing 10 mM Mg2+. In conclusion, both DMNPE-4 and DM-nitrophen undergo TPP, however, only DMNPE-4 exhibits efficient release of Ca2+ in the presence of Mg2+.  相似文献   

5.
Examination of miniature end-plate potentials (m.e.p.ps) in rat skeletal muscle poisoned in vivo by botulinum toxin type A reveals the presence of two populations of potentials. One population which corresponds to m.e.p.ps in unpoisoned muscles and to quantal end-plate potentials. The frequency of these m.e.p.ps is greatly reduced by botulinum toxin. The second population of m.e.p.ps has quite different characteristics. These m.e.p.ps have a more variable, but generally much larger amplitude, and their time to peak is longer than normal m.e.p.ps. The frequency of these m.e.p.ps increases during poisoning and reaches 0.3-1 Hz after 10-14 days. In addition to the variability in amplitude and time-to-peak these m.e.p.ps differ from those at unpoisoned junctions by being unaffected by procedures which alter extra- or intracellular Ca2+ concentrations. The appearance of this Ca2+-insensitive spontaneous quantal secretion of acetylcholine is apparently not a direct effect of the toxin but secondary to blockade of impulse transmission since it also appears at unpoisoned end-plates when transmission is impaired for other reasons. Procedures which increase the intracellular Ca2+ concentration in nerve terminals restore transmitter release from botulinum toxin poisoned nerves. Furthermore, the block caused by the toxin is very temperature-dependent, a reduction in temperature relieving the block. Since presynaptic Ca2+ currents are unaltered by the toxin it is proposed that the block of transmission is due to a reduction in the calcium content of the nerve terminal to a level where the amount of Ca2+, which normally enters, is insufficient to activate transmitter release.  相似文献   

6.
The present investigation was carried out to know the effect of Ca2+ on different peaks of compound action potential (CAP) representing the fibers having different conduction velocity. CAP was recorded from a thin bundle of nerve fibers obtained from desheathed frog sciatic nerve. Suction electrodes were used for stimulating and recording purposes. In Ca2+ -free amphibian Ringer, two distinct peaks (Peak-I and Peak-II) were observed. The threshold, conduction velocity (CV), amplitude and duration of Peak-I were 0.32 +/- 0.02 V, 56 +/- 3.0 m/sec, 2.1 +/- 0.2 mV and 0.75 +/- 0.1 ms, respectively. The Peak-II exhibited ten times greater threshold, eight times slower CV, three times lower amplitude and four times greater duration as compared to Peak-I. Addition of 2 mM Ca2+ in the bathing medium did not alter CAP parameters of Peak-I excepting 25% reduction in CV. But, in Peak-II there was 70-75% reduction in area and amplitude. The concentration-attenuation relation of Peak-II to various concentrations of Ca2+ was nonlinear and 50% depression occurred at 0.35 mM of Ca2+. Washing with Ca2+ -free solution with or without Mg2+ (2 mM)/verapamil (10 microM) could not reverse the Ca2+ -induced changes in Peak-II. Washing with Ca2+ -free solution containing EDTA restored 70% of the response. The results indicate that Ca2+ differentially influence fast and slow conducting fibers as the activity of slow conducting fibers is greatly suppressed by external calcium.  相似文献   

7.
The aim of the present study was to investigate the mechanisms involved in the contraction evoked by iso-osmotic high K+ solutions in the estrogen-primed rat uterus. In Ca2+-containing solution, iso-osmotic addition of KCl (30, 60 or 90 mM K+) induced a rapid, phasic contraction followed by a prolonged sustained plateau (tonic component) of smaller amplitude. The KCl (60 mM)-induced contraction was unaffected by tetrodotoxin (3 microM), omega-conotoxin MVIIC (1 microM), GF 109203X (1 microM) or calphostin C (3 microM) but was markedly reduced by tissue treatment with neomycin (1 mM), mepacrine (10 microM) or U-73122 (10 microM). Nifedipine (0.01-0.1 microM) was significantly more effective as an inhibitor of the tonic component than of the phasic component. After 60 min incubation in Ca2+-free solution containing 3 mM EGTA, iso-osmotic KCl did not cause any increase in tension but potentiated contractions evoked by oxytocin (1 microM), sodium orthovanadate (160 micrM) or okadaic acid (20 microM) in these experimental conditions. In freshly dispersed myometrial cells maintained in Ca2+-containing solution and loaded with indo 1, iso-osmotic KCl (60 mM) caused a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). In cells superfused for 60 min in Ca2+-free solution containing EGTA (1 mM), KCl did not increase [Ca2+]i. In Ca2+-containing solution, KCl (60 mM) produced a 76.0 +/- 16.2% increase in total [3H]inositol phosphates above basal levels and increased the intracellular levels of free arachidonic acid. These results suggest that, in the estrogen-primed rat uterus, iso-osmotic high K+ solutions, in addition to their well known effect on Ca2+ influx, activate other cellular processes leading to an increase in the Ca2+ sensitivity of the contractile machinery by a mechanism independent of extracellular Ca2+.  相似文献   

8.
The effect of extracellular ATP on the contraction of single rat cardiac myocytes was investigated, together with the effect on the transient change in cytosolic Ca2+ (Cai) elicited by excitation and on the relationship between these two parameters. In unstimulated single myocytes, ATP caused a small increase in Cai (measured as the ratio of fluorescence of Indo-1 at 410 to that at 490 nm. In myocytes bathed in a medium containing 1.0 mM [Ca2+] at 23 degrees C and stimulated at 1 Hz, ATP (1 microM) resulted in a two-threefold increase in amplitude of contraction, as measured by video cinemicrographic techniques. The duration of the Cai-transient was not altered but its amplitude was markedly enhanced, as was the amplitude of contraction. The relation between Cai and contraction-amplitude was not altered by ATP, when measured over a range of extracellular [Ca2+], suggesting that ATP does not affect the myofilament-Ca2+ interaction. The primary site of action of ATP in increasing Cai is at the sarcolemma since the addition to suspensions of myocytes of caffeine (10 mM), which depletes the sarcoplasmic reticulum Ca2+ load, does not prevent the subsequent increase of Cai due to ATP. Further, lowering of the extracellular [Ca2+] to less than 1 microM with EGTA abolishes the response of Cai to ATP, though not the response to caffeine. Thus in rat cardiac myocytes ATP stimulates trans-sarcolemmal influx of Ca2+: ADP, AMP and adenosine are ineffective. ATP markedly augments the amplitude of the Cai transient elicited by electrical stimulation thus rendering it a potent inotropic agent.  相似文献   

9.
The effects of cyanide on Ca2+ exchange in isolated ventricular myocytes and on the intracellular concentrations of Ca2+, Na+ and H+ have been investigated to assess the contribution that mitochondria might play in cellular Ca2+ metabolism. Ionic levels were measured with ion-selective electrodes. KCN (2.5 mM) inhibited a component of Ca2+ exchange in myocytes that could be attributed to mitochondrial exchange, but was without effect on non-mitochondrial Ca2+ exchange. NaCN (2.5 mM) caused a transient reduction of [H+]i, [Na+]i and [Ca2+]i when applied to the superfusate bathing ventricular trabeculae or papillary muscles. The transient changes of [Na+]i were accentuated when the preparation was exposed to a solution which would be expected to increase the cellular calcium content. The reduction of [Na+]i which accompanies a reduction of the extracellular sodium concentration, [Na]o, was attenuated in the presence of NaCN, but the intracellular acidosis resulting from a reduction of [Na]o was unaffected by NaCN. A small, but significant, rise of [Ca2+]i accompanied a reduction of [Na]o but only when NaCN was present in the superfusate. It is concluded that cyanide ions have a reasonably specific action on cardiac cellular ionic metabolism. Its primary action is to prevent mitochondrial Ca2+ sequestration. It is postulated that a Na+/H+ exchange, possibly at the sarcolemma, could account for some of the changes to sarcoplasmic ionic levels observed. In a solution of low [Na]o, it is concluded that mitochondria could sequester at least 30% of the calcium accumulated by the cell even though the sarcoplasmic [Ca2+] does not exceed 0.3 microM.  相似文献   

10.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

11.
Effect of Ni2+ on Zn2+-induced potentiation of twitch tension was studied electrophysiologically in the toe muscle fibers of Rana catesbeiana. The major findings of this investigation are as follows. When 2 mM Ni2+ was applied to fibers in a normal Ringer's solution containing 50 microM Zn2+ (Zn2+ solution), the Zn2+-potentiated twitch tension decreased remarkably to about one-third of that before Ni2+ treatment. This concentration of Ni2+ caused a 23% decrease in the duration of action potential which had been prolonged by Zn2+ (6.61-5.09 ms). Ni2+ (2 mM) added to normal Ringer's solution led to increases of about 30 and 42% in twitch tension and in the duration of action potential, respectively. A slight increase in the mechanical threshold was induced by 2 mM Ni2+. The inhibitory action of Ni2+ on the twitch tension in Zn2+ solution was larger than that in the case of tetanus tension. Diltiazem (40 microM), a Ca2+ channel blocker, did not inhibit the twitch tension potentiated in Zn2+ solution. These results suggest that the decrease in Zn2+-potentiated twitch tension by Ni2+ may possibly derive from impairment of the propagation of action potential along the T tubules.  相似文献   

12.
Intracellular Ca2+, K+, Cl-, and NO3- activities were measured with ion-selective microelectrodes in the liverwort Conocephalum conicum L. at rest, during dark/light changes, and in the course of action potentials triggered by light or electrical stimuli. The average free cytosolic Ca2+ concentration was 231 [plus or minus] 65 nM. We did not observe any light-dependent changes of the free cytosolic Ca2+ concentration as long as no action potential was triggered. During action potentials, on average a 2-fold increase of the free cytoplasmic Ca2+ concentration was recorded. Intracellular K+ activity was 76 [plus or minus] 10 mM. It did not depend on K+ concentration changes in the bath solution between 0.1 and 10 mM. The average equilibrium potential for K+ in the standard medium containing 1 mM K+ was -110 mV, which differed significantly from the resting potential of -151 [plus or minus] 2 mV. During action potentials, either a slight decrease or no changes in intracellular K+ activity were recorded. The average Cl- activity was 7.4 [plus or minus] 0.2 mM in the cytoplasm and 43.5 [plus or minus] 7 mM in the vacuole. The activities of NO3- were 0.63 [plus or minus] 0.05 mM in the cytoplasm and 3.0 [plus or minus] 0.3 mM in the vacuole. For both anions the vacuolar activity was 5 to 6 times higher than the cytoplasmic activity. After the light was switched off both the Cl- and the NO3- activity showed either no change or a slight increase. Illumination caused a gradual return to previous values or no change. During action potentials a slight decrease of intracellular Cl- activity was recorded. It was concluded that in Conocephalum, as in characean cells, chloride channels are involved in the depolarization phase of the action potentials. We discuss a model for the ion fluxes during an action potential in Conocephalum.  相似文献   

13.
Zhang X  Zou T  Liu Y  Qi Y 《Biological chemistry》2006,387(5):595-601
Gap junction channels formed by connexin50 (Cx50) are critical for the maintenance of eye lens transparency, which is sensitive to pH and external Ca2+ concentration, but the mechanism is still not clear. In this study we performed dye uptake-leakage assays, patch clamping and confocal co-localization experiments to confirm the function of calmodulin (CaM) and Ca2+ in the Cx50 hemichannel. Below pH 7.4, lucifer yellow (LY)-preloaded Cx50-HeLa cells allow dye to leak out when washed with Ca2+-free solution or incubated in solution containing 50 microg/ml W7 (CaM inhibitor) first, then washed in solution containing 2 mM Ca2+, whereas little or no dye leakage was observed when LY-preloaded Cx50-HeLa cells were incubated in solution containing 2 mM Ca2+. Moreover, in the absence of Ca2+, polarizing pulses applied to Cx50-HeLa activated outward transmembrane currents, which were inhibited by 2 mM external Ca2+. When Cx50-HeLa cells were incubated with 2 mM Ca2+ and 50 microg/ml W7, the transmembrane currents were activated again. This indicates that Ca2+ and CaM play a gating role in Cx50 hemichannels. Either the chelation of Ca2+ or the inhibition of CaM increased the permeability of Cx50 hemichannels. The same phenomena were observed below pH 6.5. Furthermore, CaM could be localized in gap junctions formed by Cx50 below pH 6.5. Our results demonstrate that CaM and Ca2+ can cooperate in the gating control of Cx50 hemichannels.  相似文献   

14.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

15.
Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 microM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.  相似文献   

16.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

17.
In experiments carried out on the isolated spinal cord of the tortoise Emys orbicularis postsynaptic potentials produced in spinal motoneurons by stimulation of the descending tracts and dorsal roots were investigated by means of the intracellular recording technique. Postsynaptic potentials were completely and reversibly blocked in Ca2+-free solutions containing 5.0 mM Mg2+ or 2.0 mM Mn2+. The amplitude and frequency of spontaneous synaptic potentials were also reduced under these conditions. The effect of Ca2+-free medium indicates that the synaptic transmission in these synapses is mediated by chemical mechanism.  相似文献   

18.
Shmygol A  Wray S 《Cell calcium》2005,37(3):215-223
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.  相似文献   

19.
Losavio A  Muchnik S 《Life sciences》2000,66(26):2543-2556
Regulation of neurotransmitter release is thought to involve modulation of the release probability by protein phosphorylation. Activation of the cAMP-protein kinase A (PKA) pathway has been shown to facilitate synaptic transmission in mammalian neuromuscular synapses, although the relevant phosphorylation targets are mostly unknown. We found that the inhibitor of the phosphodiesterase aminophylline (1 mM AMIN), the membrane-permeable analog of cAMP, 8-Br-cAMP (5 mM) and, the direct adenylate cyclase activator, forskolin (20 microM), induced an increase of miniature end-plate potentials (MEPPs) frequency in rat neuromuscular junctions. We investigated the possible involvement of the voltage-dependent calcium channels (VDCC), since these proteins are known to be phosphorylated by PKA. But this possibility was ruled out, since the increase in MEPPs frequency was not attenuated by the VDCC blocker Cd2+ (100 microM) and it was observed when AMIN was studied on hyperosmotic response, which is independent of [Ca2+]o and of Ca2+ influx through the VDCC. The lack of action of AMIN on MEPPs frequency when [Ca2+]i was diminished by exposing the preparations to zero Ca2+-EGTA solution (isotonic condition) or when nerve terminals were loaded with a permeant Ca2+ chelator (BAPTA-AM) (hypertonic condition), indicate that cAMP-mediated presynaptic facilitation is a function of nerve terminal Ca2+ concentration. We also found that AMIN exerted a comparable increase in MEPPs frequency in control and high K+ (10 and 15 mM), suggesting a single mechanism of action for spontaneous and K+-induced secretion.  相似文献   

20.
Rat pancreatic fragments and acinar preparations were incubated in vitro to characterize further the changes in phosphoinositide metabolism that occur during secretagogue action. Two distinct responses were discernible. The first response, most notably involving a decrease in phosphatidylinositol content, was (a) observed at lower carbachol concentrations in dose-response studies, (b) inhibited by incubation in Ca2+-free media containing 1 mM EGTA, (c) associated with increases in inositol monophosphate production, and (d) provoked by all tissue secretagogues (carbachol, cholecystokinin, secretin, insulin, dibutyryl cAMP and the ionophore A23187), regardless of whether their mechanism of action primarily involved Ca2+ mobilization or cAMP generation. This decrease in phosphatidylinositol content was at least partly due to phospholipase C (and/or D) activation, as evidenced by the increase in inositol monophosphate. The second response, most notably involving markedly increased incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol, was (a) observed at higher carbachol concentrations, (b) not influenced by incubation in Ca2+-free media containing 1 mM EGTA, and (c) associated with increases in inositol triphosphate production. This 32PO4 turnover response was probably largely the result of phospholipase C-mediated hydrolysis of phosphatidylinositol 4',5'-diphosphate, which, as shown previously, also occurs at higher carbachol concentrations and is insensitive to comparable EGTA-induced Ca2+ deficiency. This phosphatidylinositol 4',5'-diphosphate hydrolysis response was only observed in the action of agents (carbachol and cholecystokinin) which mobilize Ca2+ via activation of cell surface receptors. The present results indicate that phosphatidylinositol and phosphatidylinositol 4',5'-diphosphate hydrolysis are truly separable responses to secretagogues acting in the rat pancreas. Furthermore, phosphatidylinositol 4',5'-diphosphate, rather than phosphatidylinositol hydrolysis is more likely to be associated with receptor activation and Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号