首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
The expression of four different gap junction gene products (alpha 1, beta 1, beta 2, and beta 3) has been analysed during rat skin development and the hair growth cycle. Both alpha 1 (Cx43) and beta 2 (Cx26) connexins were coexpressed in the undifferentiated epidermis. A specific, developmentally regulated elimination of beta 2 expression was observed in the periderm at E16. Coinciding with the differentiation of the epidermis, differential expression of alpha 1 and beta 2 connexins was observed in the newly formed epidermal layers. alpha 1 connexin was expressed in the basal and spinous layers, while beta 2 was confined to the differentiated spinous and granular layers. Large gap junctions were present in the basal layer, while small gap junctions, associated with many desmosomes, were typical for the differentiated layers. Although the distribution pattern for alpha 1 and beta 2 expression remained the same in the neonatal and postnatal epidermis, the RNA and protein levels decreased markedly following birth. Hair follicle development was marked by expression of alpha 1 connexin in hair germs at E16. Following beta 2 detection at E20, the expression increased for both alpha 1 and beta 2 in developing follicles. A cell-type-specific expression was detected in the outer root sheath, in the matrix, in the matrix-derived cells (inner root sheath, cortex and medulla) and in the dermal papilla. In addition, alpha 1 was specifically expressed in the arrector pili muscle, while sebocytes expressed both alpha 1 and beta 3 (Cx31) connexin. beta 1 connexin (Cx32) was not detected at any stage analysed. The results indicate that multiple gap junction genes contribute to epidermal and follicular morphogenesis. Moreover, based on the utilization of gap junctions in all living cells of the surface epidermis, it appears that the epidermis may behave as a large communication compartment that may be coupled functionally to epidermal appendages (hair follicles and sebaceous glands) via gap junctional pathways.  相似文献   

2.
During tail regeneration in lizards, the epidermis forms new scales comprising a hard beta‐layer and a softer alpha‐layer. Regenerated scales derive from a controlled folding process of the wound epidermis that gives rise to epidermal pegs where keratinocytes do not invade the dermis. Basal keratinocytes of pegs give rise to suprabasal cells that initially differentiate into a corneous wound epidermis and later in corneous layers of the regenerated scales. The immunodetection of a putative p53/63 protein in the regenerating tail of lizards shows that immunoreactivity is present in the nuclei of basal cells of the epidermis but becomes mainly cytoplasmic in suprabasal and in differentiating keratinocytes. Sparse labelled cells are present in the regenerating blastema, muscles, cartilage, ependyma and nerves of the growing tail. Ultrastructural observations on basal and suprabasal keratinocytes show that the labelling is mainly present in the euchromatin and nucleolus while labelling is more diffuse in the cytoplasm. These observations indicate that the nuclear protein in basal keratinocytes might control their proliferation avoiding an uncontrolled spreading into other tissues of the regenerating tail but that in suprabasal keratinocytes the protein moves from the nucleus to the cytoplasm, a process that might be associated to keratinocyte differentiation.  相似文献   

3.
4.
目的研究角蛋白15(K15)在大鼠皮肤发育中的表达状况,定位表皮干细胞.方法以不同年龄大鼠背部皮肤为标本,用组织学方法,观察出生后大鼠皮肤的形态发育变化;以K15单克隆抗体为一抗,进行免疫组织化学染色,观察K15在大鼠皮肤中的表达状况.结果(1)组织学方法显示,随着年龄的增长,大鼠背部表皮细胞层数逐渐变少;在毛囊的生长周期中,以隆突区为界,毛囊上段为恒定区,下段呈周期性变化(2)免疫组化染色显示,毛囊隆突区细胞胞浆表达K15,随年龄的增长,K15阳性细胞出现在毛母质细胞区、毛囊外根鞘和表皮基底层.结论表皮干细胞位于毛囊隆突区,与表皮的更新和毛囊的周期性变化有关.  相似文献   

5.
6.
Phosphoinositide 3-kinases (PI3Ks) regulate an array of cellular processes and are comprised of three classes. Class I PI3Ks include the well-studied agonist-sensitive p110 isoforms; however, the functions of class II and III PI3Ks are less well characterized. Of the three class II PI3Ks, C2alpha and C2beta are widely expressed in many tissues, including the epidermis, while C2gamma is confined to the liver. In contrast to the class I PI3K p110alpha, which is expressed throughout the epidermis, C2beta was found to be localized in suprabasal cells, suggesting a potential role for C2beta in epidermal differentiation. Overexpressing C2beta in epidermal cells in vitro induced differentiation markers. To study a role for C2beta in tissue, we generated transgenic mice overexpressing C2beta in both suprabasal and basal epidermal layers. These mice lacked epidermal abnormalities. Mice deficient in C2beta were then generated by targeted gene deletion. C2beta knockout mice were viable and fertile and displayed normal epidermal growth, differentiation, barrier function, and wound healing. To exclude compensation by C2alpha, RNA interference was then used to knock down both C2alpha and C2beta in epidermal cells simultaneously. Induction of differentiation markers was unaffected in the absence of C2alpha and C2beta. These findings indicate that class II PI3Ks are not essential for epidermal differentiation.  相似文献   

7.
8.
Homozygous mice overexpressing Claudin-6 (Cldn6) exhibit a perturbation in the epidermal differentiation program leading to a defective epidermal permeability barrier (EPB) and dehydration induced death ensuing within 48 h of birth [Turksen, K., Troy, T.C., 2002. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129, 1775-1784]. Their heterozygous counterparts are also born with an incomplete EPB; however, barrier formation continues after birth and normal hydration levels are achieved by postnatal day 12 allowing survival into adulthood. Heterozygous Inv-Cldn6 mice exhibit a distinct coat phenotype and histological analysis shows mild epidermal hyperkeratosis. Expression of K5 and K14 is aberrant, extending beyond the basal layer into the suprabasal layer where they are not co-localized suggesting that their expression is uncoupled. There is also atypical K17 and patchy K15 expression in the basal layer with no K6 expression in the interfollicular epidermis; together with marked changes in late differentiation markers (e.g. profilaggrin/filaggrin, loricrin, transglutaminase 3) indicating that the normal epidermal differentiation program is modified. The expression compartment of various Cldns is also perturbed although overall protein levels remained comparable. Most notably induction of Cldn5 and Cldn8 was observed in the Inv-Cldn6 epidermis. Heterozygous Inv-Cldn6 animals also exhibit subtle alterations in the differentiation program of the hair follicle including a shorter anagen phase, and altered hair type distribution and length compared to the wild type; the approximately 20% increase in zig-zag hair fibers at the expense of guard hairs and the approximately 30% shorter guard hairs contribute to coat abnormalities in the heterozygous mice. In addition, the transgenic hair follicles exhibit a decreased expression of K15 as well as some hair-specific keratins and express Cldn5 and Cldn18, which are not detectable in the wild type. These data indicate that Cldn6 plays a role in the differentiation processes of the epidermis and hair follicle and supports the notion of a link between Cldn regulation and EPB assembly/maintenance as well as the hair cycle.  相似文献   

9.
Human keratinocytes grown on deepidermized dermis (DED) are able to reconstruct a morphologically normal stratified and keratinized epidermis. This culture system is suitable for studying in vitro the effects of various hormones and factors on epidermal differentiation, and the goal of the present work was to study the effect of vitamin D. We found that the hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3, produced very specific alterations in epidermal architecture in a dose-dependent manner, consisting of significant reduction of the nucleated layers of the epithelium, but not of the stratum corneum, which was instead slightly thickened. The study of stage-specific differentiation markers showed that the two extreme layers of epidermis, i.e. the basal layer and the stratum corneum, were unaffected by the hormone, but that the reduction involved specifically the intermediate differentiation compartment, i.e. the spinous and granular layers. It was shown that the reduction of the intermediate compartment provoked by 1,25-dihydroxyvitamin D3 is not due to a block in the proliferation of basal cells or to inhibition of their differentiation into suprabasal cells, but to stimulation of the terminal differentiation of suprabasal cells into corneocytes.  相似文献   

10.
11.
Hedgehog (Hh) signaling is conserved from flies to humans and is indispensable in embryogenesis and adulthood. Patched (Ptc) encodes a receptor for Hh ligands and functions as a tumor suppressor. PTCH1 mutations in humans are found in basal cell carcinoma (BCC) and irradiated Ptc1(+/-) mice recapitulate this phenotype. However, due to embryonic lethality associated with the Ptc1 null mutation, its normal function in embryonic and adult skin remains unknown. Here we describe the epidermal phenotypes of a spontaneous and viable allele of Ptc1, Ptc1(mes), in which the C-terminal domain (CTD) is truncated. Ptc1(mes/mes) embryos display normal epidermal and hair follicle development. Postnatal Ptc1(mes/mes) skin displays severe basal cell layer hyperplasia and increased proliferation, while stratification of the suprabasal layers is mostly normal. Interestingly, truncation of the Ptc1 CTD did not result in skin tumors. However, long term labeling studies revealed a greater than three-fold increase in label-retaining cells in the interfollicular epidermis of Ptc1(mes/mes) adults, indicating possible expansion of the epidermal stem cell compartment. Increased expression of regulators of epidermal homeostasis, c-Myc and p63, was also observed in Ptc1(mes/mes) adult skin. These results suggest that the CTD of Ptc1 is involved in regulating epidermal homeostasis in mature skin.  相似文献   

12.
The denuded basal cell layer of the hairless mouse epidermis is described in the present scanning (SEM) and transmission electron microscopical (TEM) study. The suprabasal layers were removed mechanically after trypsinization or by extracellular calcium depletion. Trypsinization before removal of the suprabasal cells caused the basal cells to shrink. Characteristic surface plication and hemi-desmosomal attachment to the basement membrane were generally preserved. SEM revealed partly maintained intercellular bridging, whereas by TEM such contacts were absent because half desmosomes were internalized. Total calcium depletion induced more serious damage to the basal cell surface, which was smooth with apparent perforations. However, cell bridges, and occasional desmosomes were present. The cell interior demonstrated important cellular injury. If the calcium deprived explants were allowed to recover in calcium-containing medium, the cells acquired an activated "regenerative" morphology, without junctions, similar to that observed in wound healing. Epidermal non-keratinocytes were seen only after trypsinization. Control experiments revealed that they adapted poorly to organ culture conditions. By TEM, we observed several interesting aspects of the differences, between dark and clear basal keratinocytes. This was unexpected because fixation studies had shown, that with the present fixation method, typical dark and clear cells do not occur in untreated epidermis. We believe that membrane injury through mechanical stripping of partly adhering epidermal layers induced "clear cells", whereby the neighboring cells appeared darker. This provides additional evidence as to the origin of the two sub-populations, dark and clear basal cells. The clear cells may be injured cells, caused by cell damage, and not by processes of cellular differentiation. The results of the present investigation supports the view that basal keratinocytes have a polygonal shape with numerous free surface extensions and they are anchored to the basement membrane with "foot pads". Our study also shows that SEM of the epidermal basal layer might be feasible. Various artifacts, however, must be considered, depending on the denudation method used. We prefer trypsinization to calcium depletion because it is less time-consuming and results in a cell morphology which in TEM is comparable to that of basal cells in untreated whole epidermis. Extra-cellular calcium depletion, however, might be useful as a method to prepare single cell suspensions for flow cytometry. Restoration of a normal calcium concentration after stripping, provides an opportunity to mimic wound healing in situ, as an alternative t  相似文献   

13.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

14.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

15.
16.
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.  相似文献   

17.
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.  相似文献   

18.
19.
Transforming growth factor-beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation and its effects on growth and differentiation have been extensively characterized in cultured keratinocytes. We used two TGF beta 1-specific polyclonal antibodies (anti-LC and anti-CC) to determine the presence of TGF beta 1 peptide in keratinocytes in sections of normal human skin in situ and in both plaque and nonplaque skin from individuals with psoriasis. In contrast to the differentiation phenotype expressed by keratinocytes in normal epidermis, keratinocytes in the psoriatic plaque exhibit a hyperproliferative/regenerative differentiation phenotype. Anti-TGF beta 1 staining was observed primarily in the epidermis. Anti-LC TGF beta 1 antibody stained nonproliferating, differentiated suprabasal keratinocytes intracellularly in normal skin but did not stain psoriatic plaques from five of seven patients. In contrast, anti-CC TGF beta 1 antibody stained suprabasal keratinocytes extracellularly in psoriatic plaques, but did not stain normal skin. Both anti-LC and anti-CC stained suprabasal keratinocytes intracellularly in nonplaque psoriatic skin. Thus, the conformation or structure of TGF beta 1 and its localization vary in keratinocytes with distinct differentiation phenotypes suggesting that TGF beta 1 is a potential modulator of keratinocyte differentiation in vivo. Selective association of TGF beta 1 with nonproliferating keratinocytes in the suprabasal layers of the epidermis and its exclusion from the proliferating keratinocytes in the basal layer suggest that it may be a physiological regulator of keratinocyte proliferation. In addition, the intracellular localization of TGF beta 1 peptide in both normal and psoriatic keratinocytes suggests that it is constitutively synthesized by epidermal keratinocytes in vivo.  相似文献   

20.
S F Amakiri 《Acta anatomica》1979,103(4):434-444
Various histochemical and histological techniques were used to study the melanin and dopa-positive cell distribution in the skin of some tropical and temperate breeds of cattle in Nigeria. Melanin pigments were concentrated in the basal and lower spinous layers of the epidermis and in the hair cortex, follicle sheaths and papillae of the various breeds. In the White Fulani and N'Dama breeds, melanin pigments were however found in all layers of the epidermis. Dopa-positive cells (melanocytes) were observed in the epidermis, dermis and hair follicles; the distribution pattern varied among breeds, being copiously disposed in the basal epidermis and papillary dermis in the White Fulani and Muturu and, except in areas of thick epidermal ridges, scanty in the epidermis and dermis of the Friesian and N'Dama. Mast cell distribution pattern in the various breeds was similar to that of the dopa-positive cells. Peroxidase-positive cells were present in the basal epidermis and upper dermis of the Muturu, widespread in the subepidermal layer of the N'Dama and very scanty in the dermis of the White Fulani and Friesian. Acid phosphatase activity was intense in the granular layer of the Muturu and N'Dama breeds and also in the papillary dermis and hair follicles, whereas alkaline phosphatase-positive dendritic cells, and 'clear' cells were also observed in the basal and upper epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号