首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The envelope (Env) protein of Moloney murine leukemia virus is the primary mediator of viral entry. We constructed a large pool of insertion mutations in the env gene and analyzed the fitness of each mutant in completing two critical steps in the virus life cycle: (i) the expression and delivery of the Env protein to the cell surface during virion assembly and (ii) the infectivity of virions displaying the mutant proteins. The majority of the mutants were poorly expressed at the producer cell surface, suggesting folding defects due to the presence of the inserted residues. The mutants with residual infectivity had insertions either in the amino-terminal signal sequence region, two disulfide-bonded loops in the receptor binding domain, discrete regions of the carboxy-terminal region of the surface subunit (SU), or the cytoplasmic tail. Insertions that allowed the mutants to reach the cell surface but not to mediate detectable infection were located within the amino-terminal sequence of the mature Env, within the SU carboxy-terminal region, near putative receptor binding residues, and throughout the fusion peptide. Independent analysis of select mutants in this group allowed more precise identification of the defect in Env function. Mapping of mutant phenotypes to a structural model of the receptor-binding domain provides insights into the protein's functional organization. The high-resolution functional map reported here will be valuable for the engineering of the Env protein for a variety of uses, including gene therapy.  相似文献   

2.
Previously it was reported that the 16-amino-acid (aa) C-terminal cytoplasmic tail of Moloney murine leukemia virus (MoMLV) transmembrane protein Pr15E is cleaved off during virus synthesis, yielding the mature, fusion active transmembrane protein p15E and the 16-aa peptide (R peptide or p2E). It remains to be elucidated how the R peptide impairs fusion activity of the uncleaved Pr15E. The R peptide from MoMLV was analyzed by Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunostained with antiserum against the synthetic 16-aa R peptide. The R peptide resolved with an apparent molecular mass of 7 kDa and not the 4 kDa seen with the corresponding synthetic peptide. The 7-kDa R peptide was found to be membrane bound in MoMLV-infected NIH 3T3 cells, showing that cleavage of the 7-kDa R-peptide tail must occur before or during budding of progeny virions, in which only small amounts of the 7-kDa R peptide were found. The 7-kDa R peptide was palmitoylated since it could be labeled with [(3)H]palmitic acid, which explains its membrane association, slower migration on gels, and high sensitivity in immunoblotting. The present results are in contrast to previous findings showing equimolar amounts of R peptide and p15E in virions. The discrepancy, however, can be explained by the presence of nonpalmitoylated R peptide in virions, which were poorly detected by immunoblotting. A mechanistic model is proposed. The uncleaved R peptide can, due to its lipid modification, control the conformation of the ectodomain of the transmembrane protein and thereby govern membrane fusion.  相似文献   

3.
4.
The nature and stability of the interactions between the gp70 and Pr15E/p15E molecules of murine leukemia virus (MLV) have been disputed extensively. To resolve this controversy, we have performed quantitative biochemical analyses on gp70-Pr15E complexes formed after independent expression of the amphotropic and ecotropic Moloney MLV env genes in BHK-21 cells. We found that all cell-associated gp70 molecules are disulfide linked to Pr15E whereas only a small amount of free gp70 is released by the cells. The complexes were resistant to treatment with reducing agents in vivo, indicating that the presence and stability of the disulfide interaction between gp70 and Pr15E are not dependent on the cellular redox state. However, disulfide-bonded Env complexes were disrupted in lysates of nonalkylated cells in a time-, temperature-, and pH-dependent fashion. Disruption seemed not to be caused by a cellular factor but is probably due to a thiol-disulfide exchange reaction occurring within the Env complex after solubilization. The possibility that alkylating agents induce the formation of the intersubunit disulfide linkage was excluded by showing that disulfide-linked gp70-Pr15E complexes exist in freshly made lysates of nonalkylated cells and that disruption of the complexes can be prevented by lowering the pH. Together, these data establish that gp70 and Pr15E form a stable disulfide-linked complex in vivo.  相似文献   

5.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

6.
7.
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.  相似文献   

8.
Mixed infection of cells with both Moloney murine leukemia virus (MoMLV) and related or heterologous viruses produces progeny pseudotype virions bearing the MoMLV genome encapsulated by the envelope of the other virus. In this study, pseudotype formation between MoMLV and the prototype parainfluenza virus Sendai virus (SV) was investigated. We report for the first time that SV infection of MoMLV producer cells results in the formation of MoMLV(SV) pseudotypes, which display a largely extended host range compared to that of MoMLV particles. This could be associated with SV hemagglutinin-neuraminidase (SV-HN) glycoprotein incorporation into MoMLV envelopes. In contrast, solitary incorporation of the other SV glycoprotein, SV fusion protein (SV-F), resulted in a distinct and narrow extension of the MoMLV host range to asialoglycoprotein receptor (ASGP-R)-positive cells (e.g., cultured human hepatoma cells). Since stably ASGP-R cDNA-transfected MDCK cells, but not parental ASGP-R-negative MDCK cells, were found to be transduced by MoMLV(SV-F) pseudotypes and transduction of ASGP-R-expressing cells was found to be inhibited by ASGP-R antiserum, a direct proof for the ASGP-R-restricted tropism of MoMLV(SV-F) pseudotypes was provided. Cultivation of ASGP-R-positive HepG2 hepatoma cells on Transwell-COL membranes led to a significant enhancement of MoMLV(SV-F) titers in subsequent flowthrough transduction experiments, thereby suggesting the importance of ASGP-R accessibility at the basolateral domain for MoMLV(SV-F) pseudotype transduction. The availability of such ASGP-R-restricted MoMLV(SV-F)-pseudotyped vectors opens up new perspectives for future liver-restricted therapeutic gene transfer applications.  相似文献   

9.
The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost.  相似文献   

10.
This report describes the results of experiments to determine whether chimeras between a retrovirus and portions of Ty3 are active in vivo. A chimera between Ty3 and a Neor-marked Moloney murine leukemia virus (M-MuLV) was constructed. The C-terminal domain of M-MuLV integrase (IN) was replaced with the C-terminal domain of Ty3 IN. The chimeric retroviruses were expressed from an amphotrophic envelope packaging cell line. The virus generated was used to infect the human fibrosarcoma cell line HT1080, and cells in which integration had occurred were selected by G418 resistance. Three independently integrated viruses were rescued. In each case, the C-terminal Ty3 IN sequences were maintained and short direct repeats of the genomic DNA flanked the integration site. Sequence analysis of the genomic DNA flanking the insertion did not identify a tRNA gene; therefore, these integration events did not have Ty3 position specificity. This study showed that IN sequences from the yeast retrovirus-like element Ty3 can substitute for M-MuLV IN sequences in the C-terminal domain and contribute to IN function in vivo. It is also one of the first in vivo demonstrations of activity of a retrovirus encoding an integrase chimera. Studies of chimeras between IN species with distinctive integration patterns should complement previous work by expanding our understanding of the roles of nonconserved domains.  相似文献   

11.
12.
13.
14.
Host proteins are incorporated into retroviral virions during assembly and budding. We have examined three retroviruses, human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and Moloney murine leukemia virus (Mo-MuLV), for the presence of ubiquitin inside each of these virions. After a protease treatment to remove exterior viral as well as contaminating cellular proteins, the proteins remaining inside the virion were analyzed. The results presented here show that all three virions incorporate ubiquitin molecules at approximately 10% of the level of Gag found in virions. In addition to free ubiquitin, covalent ubiquitin-Gag complexes were detected, isolated, and characterized from all three viruses. Our immunoblot and protein sequencing results on treated virions showed that approximately 2% of either HIV-1 or SIV p6Gag was covalently attached to a single ubiquitin molecule inside the respective virions and that approximately 2 to 5% of the p12Gag in Mo-MuLV virions was monoubiquitinated. These results show that ubiquitination of Gag is conserved among these retroviruses and occurs in the p6Gag portion of the Gag polyprotein, a region that is likely to be involved in assembly and budding.  相似文献   

15.
Retroviral integration is executed by the preintegration complex (PIC), which contains viral DNA together with a number of proteins. Barrier-to-autointegration factor (BAF), a cellular component of Moloney murine leukemia virus (MMLV) PICs, has been demonstrated to protect viral DNA from autointegration and stimulate the intermolecular integration activity of the PIC by its DNA binding activity. Recent studies reveal that the functions of BAF are regulated by phosphorylation via a family of cellular serine/threonine kinases called vaccinia-related kinases (VRK), and VRK-mediated phosphorylation causes a loss of the DNA binding activity of BAF. These results raise the possibility that BAF phosphorylation may influence the integration activities of the PIC through removal of BAF from viral DNA. In the present study, we report that VRK1 was able to abolish the intermolecular integration activity of MMLV PICs in vitro. This was accompanied by an enhancement of autointegration activity and dissociation of BAF from the PICs. In addition, in vitro phosphorylation of BAF by VRK1 abrogated the activity of BAF in PIC function. Among the VRK family members, VRK1 as well as VRK2, which catalyze hyperphosphorylation of BAF, could abolish PIC function. We also found that treatment of PICs with certain nucleotides such as ATP resulted in the inhibition of the intermolecular integration activity of PICs through the dissociation of BAF. More importantly, the ATP-induced disruption was not observed with the PICs from VRK1 knockdown cells. Our in vitro results therefore suggest the presence of cellular kinases including VRKs that can inactivate the retroviral integration complex via BAF phosphorylation.  相似文献   

16.
We have described a clone of mouse cells, termed "8A," which appears to be infected with a replication-defective variant of Moloney murine leukemia virus (MuLV) (Rein et al., J. Virol. 25:146-156, 1978). Clone 8A cells release virus particles which do not form plaques in the standard XC test. However, approximately 10(2) particles per ml of clone 8A supernatant do form plaques in a modified XC test (the "complementation plaque assay"), in which the assay cells are coinfected with the XC-negative, nondefective amphotropic MuLV as well as the test virus. Superinfection of clone 8A cells themselves with amphotropic MuLV results in the production of approximately 10(5), rather than approximately 10(2), particles per ml which register in the complementation plaque assay. This increase is due to the rescue of replication-defective ecotropic MuLV from clone 8A cells by amphotropic MuLV since (i) this ecotropic MuLV can only form XC plaques in cells which are coinfected with amphotropic MuLV; and (ii) it is possible to transmit this defective variant, rescued from superinfected clone 8A cells, to a fresh clone of normal mouse cells. The time course of production of the rescued MuLV particles by superinfected clone 8A cells is virtually identical to that of rescue from these cells of murine sarcoma virus. Amphotropic MuLV superinfection of "NP-N" cells, which contain a "non-plaque-forming" variant of N-tropic MuLV (Hopkins and Jolicoeur, J. Virol. 16:991-999, 1975), also increases the titer of particles registering in the complementation plaque assay; thus, NP-N cells, like clone 8A cells, contain a rescuable defective variant of ecotropic MuLV.  相似文献   

17.
The fusion of XC cells induced by murine leukemia virus (MuLV)-infected cells is also induced by homogenates prepared from the infected cells and by purified MuLV. The fusion-inducing factor appears to contain a heat-labile lipoprotein. No synthesis of specific macromolecules by the XC cells is necessary to obtain fusion. The results suggest that specific components of the viral particle are the activators for the fusion process and they may also be present in the membranes of infected cells.  相似文献   

18.
To investigate receptor-mediated Moloney murine leukemia virus (MoMuLV) entry, the green fluorescent protein (GFP)-tagged ecotropic receptor designated murine cationic amino acid transporter (MCAT-1) (MCAT-1-GFP) was constructed and expressed in 293 cells (293/MCAT-1-GFP). 293/MCAT-1-GFP cells displayed green fluorescence primarily at the cell membrane and supported wild-type levels of MoMuLV vector binding and transduction. Using immunofluorescence labeling and confocal microscopy, it was demonstrated that the surface envelope protein (SU) gp70 of MoMuLV virions began to appear inside cells 5 min after virus binding and was colocalized with MCAT-1-GFP. However, clathrin was not colocalized with MCAT-1-GFP, suggesting that MoMuLV entry, mediated by MCAT-1, does not involve clathrin. Double immunofluorescence labeling of SU and clathrin in 293 cells expressing untagged receptor (293/MCAT-1) gave the same results, i.e., SU and clathrin did not colocalize. In addition, we examined the transduction ability of MoMuLV vector on HeLa cells overexpressing the dominant-negative GTPase mutant of dynamin (K44A). HeLa cells overexpressing mutant dynamin have a severe block in endocytosis by the clathrin-coated-pit pathway. No significant titer difference was observed when MoMuLV vector was tranduced into HeLa cells overexpressing either wild-type or mutant dynamin, while the transduction ability of vesicular stomatitis virus glycoprotein pseudotyped vector into HeLa cells overexpressing mutant dynamin was decreased significantly. Taken together, these data suggest that MoMuLV entry does not occur through the clathrin-coated-pit-mediated endocytic pathway.  相似文献   

19.
We have identified mutations in the human immunodeficiency virus type 1 (HIV-1) matrix protein (MA) which block infectivity of virions pseudotyped with murine leukemia virus (MuLV) envelope (Env) glycoproteins without affecting infectivity conferred by HIV-1 Env or vesicular stomatitis virus G glycoproteins. This inhibition is very potent and displays a strong transdominant effect; infectivity is reduced more than 100-fold when wild-type and mutant molecular clones are cotransfected at a 1:1 ratio. This phenomenon is observed with both ecotropic and amphotropic MuLV Env. The MA mutations do not affect the incorporation of MuLV Env into virions. We demonstrate that in HIV-1 virions pseudotyped with MuLV Env, the HIV-1 protease (PR) efficiently catalyzes the cleavage of the p15(E) transmembrane (TM) protein to p12(E). Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM. Furthermore, the transdominant inhibition exerted by the mutant MA on wild-type infectivity correlates with the relative level of p15(E) cleavage. Consistent with the hypothesis that abrogation of infectivity imposed by the mutant MA is due to inhibition of p15(E) cleavage, mutant virions are significantly more infectious when pseudotyped with a truncated p12(E) form of MuLV Env. These results indicate that HIV-1 Gag sequences can influence the viral PR-mediated processing of the MuLV TM Env protein p15(E). These findings have implications for the development of HIV-1-based retroviral vectors pseudotyped with MuLV Env, since p15(E) cleavage is essential for activating membrane fusion and virus infectivity.  相似文献   

20.
Moloney murine leukemia virus (M-MuLV) IN-IN protein interactions important for catalysis of strand transfer and unimolecular and bimolecular disintegration reactions were investigated by using a panel of chemically modified M-MuLV IN proteins. Functional complementation of an HHCC-deleted protein (NΔ105) by an independent HHCC domain (CΔ232) was severely compromised by NEM modification of either subunit. Productive NΔ105 IN-DNA interactions with a disintegration substrate lacking a long terminal repeat 5′-single-stranded tail also required complementation by a functional HHCC domain. Virus encoding the C209A M-MuLV IN mutation exhibited delayed virion production and replication kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号