首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., 218Po, 214Pb, 214Bi, and 214Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of 214Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from 214Pb and 214Bi, while the rest is from 218Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM?1 calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world exposed to radon progeny by measuring their concentrations, aerosol sizes, and unattached fractions.  相似文献   

2.
Summary Measurements of the concentrations of222Rn, its short-lived decay products and of212Pb -212Bi were performed in 150 dwellings and in the open air in the Federal Republic of Germany. The concentration of222Rn was measured by electrostatic deposition of218Po. The concentrations of the short-lived decay products were measured by air sampling and alpha-spectroscopy. It was found that inside dwellings the average potential alpha-energy concentration of the short-lived daughters is about three times higher than in the open air. The total potential alpha-energy concentration indoors amounts to 2.6 · 10–3 Working Level (W. L.). Direct measurements of the equilibrium factor inside dwellings gave a mean value of 0.3. A strong dependence of the potential alpha energy concentration on the ventilation rate in dwellings has been observed. These ventilation effects exceed the effects caused by differences in the activity concentrations due to different building materials.The dose calculation results in an average dose to the whole lung due to the inhalation of short-lived radon daughters of about 0.05–0.2 mGy/a. An estimate of risk - based on the risk factors for uranium miners - shows an average lifetime risk of about 6 · 10–4 for the incidence of lung cancer caused by inhalation of radon and thoron daughters in dwellings in the Federal Republic of Germany.The research programme was supported by the Bundesminister des Innern of the Federal Republic of Germany  相似文献   

3.
The aim of this preliminary study was to measure the indoor radon activity concentration in the houses and offices of Radiation Oncology and Nuclear Medicine staff at Dokuz Eylül University and to assess the results from a radiological perspective. LR-115 type II solid-state nuclear track detectors were installed in the homes and hospital and were exposed for 2 months. LR-115 type II detectors were etched for 90 min in 10% (2.5 M) NaOH solution at 60°C and radon activity concentration was determined from observed microscopic track densities. It was observed that measured indoor radon concentration ranged between 18 and 624 Bq/m3 with a geometric mean of 95 Bq/m3 in hospital, and between 22 and 560 Bq/m3 with a geometric mean of 129 Bq/m3 in homes. Estimates of the annual effective dose received by medical staff who participated in the study ranged between 0.76 and 8.79 mSv. On average, the hospital building contributed 41% to the annual effective dose. The reported values for radon concentrations and the corresponding estimated annual effective equivalent doses were within the limits recommended by the International Commission on Radiological Protection as well as the Turkish Atomic Energy Commission recommended limits for workplaces and houses.  相似文献   

4.
In the present study, the age-dependent doses due to inhalation of short lived decay progeny of radon, i.e., 214Po to different body organs have been calculated for the inhabitants of the Jammu district, Jammu &; Kashmir, India. The estimated age-dependent doses for different body organs due to inhalation of radon progeny through air for all age groups varied between 0.002E-06 and 0.10 n Svy?1 which were found to be well within the recommended limit of 1000 µ Svy?1 (ICRP). The progeny concentration of radon and thoron was calculated and compared by two different techniques. The attached and un-attached progeny concentration of radon and thoron was calculated by using a passive time integrating, deposition-based technique. The measured attached and un-attached radon and thoron progeny concentrations have been cross-checked by on-line active technique, i.e., Flow-mode Integrated Sampler. A weak positive correlation has been observed between the two devices. The median value of un-attached fraction was found to be 0.15 and 0.12 for thoron and radon progeny, respectively and found to have a log-normal distribution. A good positive correlation has been observed between radon and thoron progeny concentrations.  相似文献   

5.
For the determination of airborne radionuclide concentrations in real time, a fixed filter device was constructed which fits directly onto a germanium detector with standard nuclear electronics and a multichannel analyzer buffer connected via a data line to a personal computer for remote control and on-line spectrum evaluation. The on-line gamma-ray spectrometer was applied to the study of radon decay product concentrations in ground-level air and to the rapid detection of any contamination of the environmental air by artificial radionuclides. At Munich-Neuherberg, depending on the meteorological conditions, the measured air concentrations of214Pb, the first gamma-ray-emitting member of the222Rn decay series, varied from about 1 to 50 Bq m–3. For the artifical radionuclides60Co,131I and137Cs the detection limits were determined as a function of the varying natural radon daughter concentrations at sampling and counting times of 1 h or 1 day. For these radionuclides minimum detectable air activity concentrations of 0.3 or 0.001 Bq m–3, respectively, were obtained at low radon daughter levels. At high radon daughter levels the respective detection limits were found to be higher by a factor of only about 2.Dedicated to Prof. Wolfgang Jacobi on the occasion of his 65th birthday  相似文献   

6.
In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients’ skin varied from 1.2 to 4.1 Bq/cm2 in the bathtub, and from 1.1 to 2.6 Bq/cm2 in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.  相似文献   

7.
Levels of radon were surveyed in the air at underground workplaces of eight major Slovenian wineries. Geometric mean and geometric standard deviation values, respectively, obtained with different devices were 81 Bq m−3 and 2.3 with alpha scintillation cells, 114 Bq m−3 and 2.0 by exposing etched track detectors for 1–5 months, and 183 Bq m−3 and 2.6 from 1–4-weeks continuous measurements. The equilibrium factor was 0.25–0.67, and the unattached fraction of radon short-lived decay products was in the range 0.09–0.20. Effective doses were calculated and compared based on radon data obtained with different techniques.  相似文献   

8.
A system was set up to provide direct exposure of cells cultured in vitro to radon and its decay products. Radon gas emanating from a uranium source was introduced at a measured concentration in a closed 10-m(3) exposure chamber. Cells were cultured on the microporous membrane of an insert that was floating over the culture medium in a six-well cluster plate. Plates with cells were placed in an open thermoregulated bath within the chamber. Under these conditions, cells were irradiated by direct deposition of radon and radon decay products. During exposure, all parameters, including radon gas concentrations, decay product activities, and potential alpha-particle energy concentrations, were determined by periodic air-grab samplings inside the chamber. The energy spectrum of deposited decay products was characterized. An estimation of alpha-particle flux density on the area containing cells was performed using CR-39 detector films that were exposed in cell-free wells during the cell exposure. The number of alpha-particle traversals per cell was deduced both from the mean number of CR-39 tracks per surface unit and from measurements of entire cells or nuclear surfaces. This paper describes the design of experiment, the dosimetry of radon and radon decay product, and the procedures for aerosol measurements. Our preliminary data show the usefulness of the in vitro cell culture approach to the study of the early cellular effects of radon and its decay products.  相似文献   

9.
Fallout from the Fukushima nuclear accident has been monitored for about 1 month in Thessaloniki, Northern Greece. Three different radionuclides, one short-lived, one relatively long-lived and one long-lived fission product were identified in air, grass and milk samples. The 131I, 137Cs and 134Cs activity concentrations in air reached 497, 145 and 126 μBq m−3, respectively on 4 April, 2011. These radionuclides are of particular concern regarding their transfer from the environment to population through the ingestion pathways for the assessment of the Fukushima accident consequences. Radioecological indexes (eco-indexes) of fallout measurements in the air–grass–cow-milk–man pathway for 131I were determined, as they are related to radiological impact of the Fukushima derived radionuclides on the public and environment.  相似文献   

10.
In the period from 1949 to 1956, liquid radioactive waste was routinely and accidentally discharged by the Mayak Production Association, Southern Urals, Russia, into the Techa river. Based on a novel approach, the contamination of the Techa river water, the bottom sediments and the adjacent flood plains was modelled, and internal and external doses were estimated for two villages located downstream of the site of liquid radioactive waste release. Altogether, 11 radionuclides that occurred in the liquid radioactive waste were included in the calculations. The results suggest significantly higher doses than previously assumed, with the major contribution in the year 1951. Radionuclides with half-lives of less than 1 year, such as 89Sr, 131I, 95Zr+95Nb, 103Ru+103mRh, 140Ba+140La, and 144Ce+144Pr, represent the major sources and, in contrast, long-lived radionuclides, such as 90Sr and 137Cs that have so far been assumed to be most important, did not dominate the doses. For adults from the village Metlino, located 7 km downstream of the site of liquid radioactive waste discharge, the committed effective doses due to intake of radionuclides were calculated to be about 2.3 Sv, while the external doses were between about 1.2 Sv and 6.9 Sv. On the other hand, for adults from Muslyumovo, located 75 km downstream, the commited effective doses due to intake of radionuclides were calculated to be about 0.5 Sv, while the external doses were between 0.5 Sv and 2.0 Sv. The values for the skin doses to the Metlino and Muslyumovo populations were about 7.1 Sv and 1.3 Sv, respectively. It is concluded that the current dose estimates for the residents of the Techa river need, therefore, reevaluation.  相似文献   

11.
Salps, salp fecal pellets and other zooplankton species were analyzed for a suite of elements and natural radionuclides to assess their role in the biogeochemical cycling of nuclides in oceanic waters. The nuclide/Al ratios in organisms normalized to the same ratio in crustal rock indicated that Ca, Sr, Zn, Cu, U,210Po, and210Pb are enriched in the organisms. The concentrations of Fe, Al, Th isotopes and210Pb in salps and fecal pellets were about an order of magnitude higher than those in salps, whereas Ca, Cu, Zn, Mn and Po were higher by factors of about 2–5. Fluxes via salp defecation were higher than those which have been measured in crustacean zooplankton species, a result primarily due to the high defecation rates characteristic of salps. High nuclide levels in salp fecal pellets coupled with high defecation rates and presumed high salp biomass in many areas underscore the importance of these indiscriminate filter feeders in packaging and transporting to depth particulate-associated nuclides in surface waters.  相似文献   

12.
Radiation and Environmental Biophysics - The transfer of radon from thermal water via the skin to different human organs in radon therapy can experimentally be determined by measuring the radon...  相似文献   

13.
Radon is a ubiquitous natural carcinogen derived from the three primordial radionuclides of the uranium series (238U and 235U) and thorium series (232Th). In general, it is present at very low concentrations in the outdoor or indoor environment, but a number of scenarios can give rise to significant radiological exposures. Historically, these scenarios were not recognised, and took many centuries to understand the links between the complex behaviour of radon and progeny decay and health risks such as lung cancer. However, in concert with the rapid evolution in the related sciences of nuclear physics and radiological health in the first half of the twentieth century, a more comprehensive understanding of the links between radon, its progeny and health impacts such as lung cancer has evolved. It is clear from uranium miner studies that acute occupational exposures lead to significant increases in cancer risk, but chronic or sub-chronic exposures, such as indoor residential settings, while suggestive of health risks, still entails various uncertainties. At present, prominent groups such as the BEIR or UNSCEAR committees argue that the ‘linear no threshold’ (LNT) model is the most appropriate model for radiation exposure management, based on their detailed review and analysis of uranium miner, residential, cellular or molecular studies. The LNT model implies that any additional or excess exposure to radon and progeny increases overall risks such as lung cancer. A variety of engineering approaches are available to address radon exposure problems. Where high radon scenarios are encountered, such as uranium mining, the most cost effective approach is well-engineered ventilation systems. For residential radon problems, various options can be assessed, including building design and passive or active ventilation systems. This paper presents a very broad but thorough review of radon sources, its behaviour (especially the importance of its radioactive decay progeny), common mining and non-mining scenarios which can give rise to significant radon and progeny exposures, followed by a review of associated health impacts, culminating in typical engineering approaches to reduce exposures and rehabilitate wastes.  相似文献   

14.
This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny’s production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m?3)?1 h?1 in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.  相似文献   

15.
Radionuclide concentrations in Australian terrestrial fauna, including indigenous kangaroos and lizards, as well as introduced sheep and water buffalo, are of interest when considering doses to human receptors and doses to the biota itself. Here, concentration ratio (CR) values for a variety of endemic and introduced Australian animals with a focus on wildlife and livestock inhabiting open rangeland are derived and reported. The CR values are based on U- and Th-series concentration data obtained from previous studies at mining sites and 241Am and 239/240Pu data from a former weapons testing site. Soil-to-muscle CR values of key natural-series radionuclides for grazing Australian kangaroo and sheep are one to two orders of magnitude higher than those of grazing cattle in North and South America, and for 210Po, 230Th, and 238U are one to two orders of magnitude higher than the ERICA tool reference values. When comparing paired kangaroo and sheep CR values, results are linearly correlated (r = 0.81) for all tissue types. However, kidney and liver CR values for kangaroo are typically higher than those of sheep, particularly for 210Pb, and 210Po, with values in kangaroo liver more than an order of magnitude higher than those in sheep liver. Concentration ratios for organs are typically higher than those for muscle including those for 241Am and 239/240Pu in cooked kangaroo and rabbit samples. This study provides CR values for Australian terrestrial wildlife and livestock and suggests higher accumulation rates for select radionuclides in semi-arid Australian conditions compared with those associated with temperate conditions.  相似文献   

16.
In this article, the levels of 222Rn concentrations, annual effective doses, and excess lifetime cancer risk estimations were investigated for water samples in the city of Osmaniye, located in the southern part of Turkey. The measurements were conducted using a radon gas analyzer (AlphaGUARD PQ 2000 PRO). The arithmetic average of 222Rn concentrations was 0.44 Bq.L?1 with a geometric standard deviation of 0.19 and geometric average 0.41 Bq.L?1. The results obtained were compared with the findings of other studies. All measured radon concentrations were below the values recommended by the World Health Organization and the U.S. Environmental Protection Agency. The associated radiological parameters such as annual effective doses (AED) and excess lifetime cancer risk (ELCR) from consumption of these waters were calculated. The computed average annual effective doses for ingestion and inhalation as well as excess lifetime cancer risk were estimated to be 1.13 μSv.y?1, 1.10 μSv.y?1, and 3.95 × 10?6, respectively. 222Rn concentration, AED, and ELCR interpolated values of the region were determined and mapped using the Kriging method. The results of radon concentrations in this study provide a data baseline for future studies on subsequent evaluations of possible future environmental contamination of Osmaniye Province.  相似文献   

17.
R. Gasca 《Hydrobiologia》2003,510(1-3):115-124
The species composition, distribution, and abundance of the hyperiid amphipods collected in March 1993 across a Gulf of Mexico cold-core ring (CCR) were analyzed. Day and night samples were collected by oblique tows (100 m to surface) with a plankton net. Hyperiids were represented by 56 species, 21 of which have not been recorded previously in gulf waters. The local oceanic community differs from that reported from adjacent neritic and neritic-oceanic areas of the Northwestern Tropical Atlantic. Overall, hyperiids were more abundant within (59% of total catch in org./1000 m3) than outside the CCR (41%). All inside CCR stations were sampled at night. Night outside vs. night inside CCR hyperiid faunas showed important differences in terms of species richness, composition and density. Cluster analysis indicated that day sta. 5 on the edge but outside the CCR was more similar to those stations inside the CCR (nighttime samples) than to the other daytime samples. Moreover, all the stations outside the CCR were clustered together independently of their day or night origin. It is suggested that the differences found were more related to differential conditions related to the CCR than to diel vertical migration. The analysis of three congeneric pairs with inverse CCR-related abundance and with known or inferred migratory patterns strengthened the idea that these pairs are probably separated by thermal preferences; also, their vertical migratory patterns seem to be abnormal inside the CCR. A relatively higher concentration of immature stages inside the CCR supports the idea that the enriched CCR waters constitute areas of increased production. Furthermore, this higher productivity enhances the chances of hyperiids to find their hosts, the gelatinous zooplankters, which are also more abundant inside the CCR.  相似文献   

18.
Seasonal and long-term variation of the airborne 212Pb concentration, representative of the equilibrium equivalent concentration of thoron decay products (EECRn220), was investigated from 1989 through 1996 at a semi-natural location in southern Germany. Continuous measurement yielded a long-term average concentration of 0.082 Bq m–3, while daily mean concentrations varied from ≤0.01 to 0.34 Bq m–3. An average annual effective dose of 1.4 mSv due to outdoor thoron progeny concen-tration was estimated. This is about 2% of the dose due to the average short-lived radon progeny concentration (EECRn222) of 8.4 Bq m–3 measured for this location in the same period. In most years the seasonal pattern of 212Pb activity concentration in the atmosphere is characterized by two maxima: the first in May and the second one in September. Low concentrations are observed from November through February of each year. This is in contrast to the behaviour of the short-lived 222Rn progeny which exhibit enhanced concentrations exactly during these months. The most probable reason for the different temporal behaviour of 212Pb is the extremely reduced flux of thoron gas from the ground during the winter months. Received: 19 August 1997 / Accepted in revised form: 22 January 1998  相似文献   

19.
Identifying resuspended particles using isotope ratios   总被引:5,自引:2,他引:3  
Three simple methods were developed to estimate the proportion of particles in lake water derived from resuspended material. These techniques use the different distributions of long and short-lived radioisotopes sorbed onto particles and were tested in the three basins of Lake Erie using 7Be, 137Cs and 210Po/210Pb.While the concentration of 210Po on particles did not vary significantly in the lake, resuspended particles were characterized by high concentrations of 137Cs and low concentrations of 7Be. The distribution of these radioisotopes is consistent with a simple mixing model in which the fraction of particles in the lake water derived from resuspension ranged from 8% to about 100%. Higher concentrations of resuspended particles were found in deeper samples from the nepheloid layer and in the shallow western basin where thermal stratification was very weak.  相似文献   

20.
Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order 137Cs>90Sr>>241Am239+240Pu in the simulated lung fluid. The dissolution rate constant of e.g. 239+249Pu ranged from 0.72 to 5.4×10–6 g·cm–2 d–1 and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for 137Cs and 90Sr. On the other hand, for 239Pu and 241Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for 137Cs and 90Sr and type S material characteristics for 239Pu and 241Am.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号