首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm2 and Sv.cm2, respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm−2 s−1. The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.  相似文献   

2.
Neutron dose coefficients for standard irradiation geometries have been reported in International Commission on Radiological Protection (ICRP) Publication 116 for the ICRP Publication 110 adult reference phantoms. In the present work, organ and effective dose coefficients have been calculated for a receptor in both upright and articulated (bent) postures representing more realistic working postures exposed to a mono-energetic neutron radiation field. This work builds upon prior work by Dewji and co-workers comparing upright and bent postures for exposure to mono-energetic photon fields. Simulations were conducted using the Oak Ridge National Laboratory’s articulated stylized adult phantom, “Phantom wIth Moving Arms and Legs” (PIMAL) software package, and the Monte Carlo N-Particle (MCNP) version 6.1.1 radiation transport code. Organ doses were compared for the upright and bent (45° and 90°) phantom postures for neutron energies ranging from 1 × 10??9 to 20 MeV for the ICRP Publication 116 external exposure geometries—antero-posterior (AP), postero-anterior (PA), and left and right lateral (LLAT, RLAT). Using both male and female phantoms, effective dose coefficients were computed using ICRP Publication 103 methodology. The resulting coefficients for articulated phantoms were compared to those of the upright phantom. Computed organ and effective dose coefficients are discussed as a function of neutron energy, phantom posture, and source irradiation geometry. For example, it is shown here that for the AP and PA irradiation geometries, the differences in the organ coefficients between the upright and bent posture become more pronounced with increasing bending angle. In the AP geometry, the brain dose coefficients are expectedly higher in the bent postures than in the upright posture, while all other organs have lower dose coefficients, with the thyroid showing the greatest difference. Overall, the effective dose estimated for the upright phantom is more conservative than that for the articulated phantom, which may have ramifications in the estimation or reconstruction of radiation doses.  相似文献   

3.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.  相似文献   

4.
Conversion coefficients from measurable quantities such as air kerma free-in-air or personal dose equivalent to effective dose were determined by phantom experiments. Heterogenic anthropomorphic phantoms representing children of one and five years age, and a Rando phantom representing an adult were exposed in the open field contaminated by different levels of radiocesium in the upper soil layer, in a forest site and inside a wooden house. LiF thermoluminescent (TL) detectors were used inside the phantoms for the estimation of organ doses and effective dose. Personal dosimeters similar to those used in radiation protection for individual dose measurements were placed onto the phantom surface (chest area). The ratios of dose values in separate organs to air kerma free-in-air varied from 0.69 to 1.15 for the children phantoms, and from 0.55 to 0.94 for the adult phantom, respectively, when irradiated in the open field. Body size (weight) was found to be the most important factor influencing the values of the conversion coefficients. The differences observed can reach approximately 40% when comparing conversion factors from air kerma free-in-air to effective dose for adults and newborns. For conversion coefficients from personal dose to effective dose, these differences can reach approximately 15%. The dependences of the various conversion coefficients on body mass were quantified by regression analysis. The results were compared with those calculated for a plane mono-energetic photon source having an energy of 700 keV and being located in the ground at a depth of 0.5 g cm−2. Calculated and measured conversion coefficients from air kerma free-in-air to effective dose agreed within 12%.  相似文献   

5.
PurposeThe purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM).MethodsThe MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM.ResultsThe results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value.ConclusionsThe developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols.  相似文献   

6.
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.  相似文献   

7.
The feasibility of reducing the differences between patient-specific internal doses and doses estimated using reference phantoms was evaluated. Relatively simple adjustments to a polygon-surface ICRP adult male reference phantom were applied to fit selected individual dimensions using the software Rhinoceros®4.0. We tested this approach on two patient-specific phantoms: the biggest and the smallest phantoms from the Helmholtz Zentrum München library. These phantoms have unrelated anatomy and large differences in body-mass-index. Three models approximating each patient’s anatomy were considered: the voxel and the polygon-surface ICRP adult male reference phantoms and the adjusted polygon-surface reference phantom. The Specific Absorbed Fractions (SAFs) for internal photon and electron sources were calculated with the Monte Carlo code EGSnrc. Employing the time-integrated activity coefficients of a radiopharmaceutical (S)-4-(3-18F-fluoropropyl)-l-glutamic acid and the calculated SAFs, organ absorbed-dose coefficients were computed following the formalism promulgated by the Committee on Medical Internal Radiation Dose. We compared the absorbed-dose coefficients between each patient-specific phantom and other models considered with emphasis on the cross-fire component. The corresponding differences for most organs were notably lower for the adjusted reference models compared to the case when reference models were employed. Overall, the proposed approach provided reliable dose estimates for both tested patient-specific models despite the pronounced differences in their anatomy. To capture the full range of inter-individual anatomic variability more patient-specific phantoms are required. The results of this test study suggest a feasibility of estimating patient-specific doses within a relative uncertainty of 25% or less using adjusted reference models, when only simple phantom scaling is applied.  相似文献   

8.
The use of dose coefficients (DCs) based on the reference phantoms recommended by the International Commission on Radiological Protection (ICRP) with a fixed body size may produce errors to the estimated organ/tissue doses to be used, for example, for epidemiologic studies depending on the body size of cohort members. A set of percentile-specific computational phantoms that represent 10th, 50th, and 90th percentile standing heights and body masses in adult male and female Caucasian populations were recently developed by modifying the mesh-type ICRP reference computational phantoms (MRCPs). In the present study, these percentile-specific phantoms were used to calculate a comprehensive dataset of body-size-dependent DCs for photon external exposures by performing Monte Carlo dose calculations with the Geant4 code. The dataset includes the DCs of absorbed doses for 29 individual organs/tissues from 0.01 to 104 MeV photon energy, in the antero-posterior, postero-anterior, right lateral, left lateral, rotational, and isotropic geometries. The body-size-dependent DCs were compared with the DCs of the MRCPs in the reference body size, showing that the DCs of the MRCPs are generally similar to those of the 50th percentile standing height and body mass phantoms over the entire photon energy region except for low energies (≤ 0.03 MeV); the differences are mostly less than 10%. In contrast, there are significant differences in the DCs between the MRCPs and the 10th and 90th percentile standing height and body mass phantoms (i.e., H10M10 and H90M90). At energies of less than about 10 MeV, the MRCPs tended to under- and over-estimate the organ/tissue doses of the H10M10 and H90M90 phantoms, respectively. This tendency was revised at higher energies. The DCs of the percentile-specific phantoms were also compared with the previously published values of another phantom sets with similar body sizes, showing significant differences particularly at energies below about 0.1 MeV, which is mainly due to the different locations and depths of organs/tissues between the different phantom libraries. The DCs established in the present study should be useful to improve the dosimetric accuracy in the reconstructions of organ/tissue doses for individuals in risk assessment for epidemiologic investigations taking body sizes into account.  相似文献   

9.
Organ or tissue equivalent dose, the most important quantity in radiation protection, cannot be measured directly. Therefore it became common practice to calculate the quantity of interest with Monte Carlo methods applied to so-called human phantoms, which are virtual representations of the human body. The Monte Carlo computer code determines conversion coefficients, which are ratios between organ or tissue equivalent dose and measurable quantities. Conversion coefficients have been published by the ICRP (Report No. 74) for various types of radiation, energies and fields, which have been calculated, among others, with the mathematical phantoms ADAM and EVA. Since then progress of image processing, and of clock speed and memory capacity of computers made it possible to create so-called voxel phantoms, which are a far more realistic representation of the human body. Voxel (Volume pixel) phantoms are built from segmented CT and/or MRI images of real persons. A complete set of such images can be joined to a 3-dimensional representation of the human body, which can be linked to a Monte Carlo code allowing for particle transport calculations. A modified version of the VOX_TISS8 human voxel phantom (Yale University) has been connected to the EGS4 Monte Carlo code. The paper explains the modifications, which have been made, the method of coupling the voxel phantom with the code, and presents results as conversion coefficients between organ equivalent dose and kerma in air for external photon radiation. A comparison of the results with published data shows good agreement.  相似文献   

10.
The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., 218Po, 214Pb, 214Bi, and 214Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of 214Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from 214Pb and 214Bi, while the rest is from 218Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM?1 calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world exposed to radon progeny by measuring their concentrations, aerosol sizes, and unattached fractions.  相似文献   

11.
Current epidemiological approaches to radon dosimetry yield a dose conversion factor (DCF) of 4 mSv WLM−1 while the dosimetric approaches give a value closer to 13 mSv WLM−1. The present study investigated whether the application of compartment models for the bronchial (BB) and bronchiolar (bb) regions, rather than more anatomically realistic airway tube models, has brought the dosimetric DCF to the higher values. The airway tube model of the tracheo-bronchial tree was used to calculate the effective dose per unit radon exposure. All other elements of the human respiratory tract from the reports of the ICRP or NRC were adopted. A dosimetric derivation of the radon DCF using the airway tube model yielded a value of 14.2 mSv WLM−1. This value is slightly larger than, but not significantly different from, the result obtained through the ICRP 66 approach. It is concluded that utilization of the airway tube model instead of the regional ICRP 66 compartmental model cannot reconcile the gap between dose conversion factors derived from epidemiological and dosimetric approaches.  相似文献   

12.
The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year?1 per 100 Bq m?3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.  相似文献   

13.
A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant’s epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of 214Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.  相似文献   

14.
PurposeTo estimate organ dose and effective dose for patients for cardiac CT as applied in an international multicenter study (CORE320) with a 320-Detector row CT scanner using Monte Carlo (MC) simulations and voxelized phantoms. The effect of positioning of the arms, off-centering the patient and heart rate on patient dose was analyzed.MethodsA MC code was tailored to simulate the geometry and characteristics of the CT scanner. The phantoms representing the adult reference male and female were implemented according to ICRP 110. Effective dose and organ doses were obtained for CT acquisition protocols for calcium scoring, coronary angiography and myocardial perfusion.ResultsFor low heart rate, the normalized effective dose (E) for cardiac CT was higher for female (5.6 mSv/100 mAs) compared to male (2.2 mSv/100 mAs) due to the contribution of female breast tissue. Averaged E for female and male was 11.3 mSv for the comprehensive cardiac protocol consisting of calcium scoring (1.9 mSv); coronary angiography including rest cardiac perfusion (5.1 mSv) and stress cardiac perfusion (4.3 mSv). These values almost doubled at higher heart rates (20.1 mSv). Excluding the arms increased effective dose by 6–8%, centering the patient showed no significant effect. The k-factor (0.028 mSv/mGy.cm) derived from this study leads to effective doses up to 2–3 times higher than the values obtained using now outdated methodologies.ConclusionMC modeling of cardiac CT examinations on realistic voxelized phantoms allowed us to assess patient doses accurately and we derived k-factors that are well above those published previously.  相似文献   

15.
Cancer mortality risk coefficients for neutrons have recently been assessed by a procedure that postulates for the neutrons a linear dose dependence, invokes the excess risk of the A-bomb survivors at a gamma-ray dose D(1) of 1 Gy, and assumes a neutron RBE as a function of D(1) between 20 and 50. The excess relative risk (ERR) of 0.008/mGy has been obtained for R(1) = 20 and 0.016/mGy for R(1) = 50. To compare these results to the current ICRP nominal risk coefficient for solid cancer mortality (0.045/Sv for a population of all ages; 0.036/Sv for a working population), the ERR is translated into lifetime attributable risk and is then related to effective dose. The conversion is not trivial, because the neutron effective dose has been defined by ICRP not as a weighted genuine neutron dose (neutron kerma), but as a weighted dose that includes the dose from gamma rays that are induced by neutrons in the body. If this is accounted for, the solid cancer mortality risk for a working population is found to agree with the ICRP nominal risk coefficient for neutrons in their most effective energy range, 0.2 MeV to 0.5 MeV. In radiation protection practice, there is an added level of safety, because the effective dose, E, is-for monitoring purposes-assessed in terms of the operational quantity H*, which overestimates E substantially for neutrons between 0.01 MeV and 2 MeV.  相似文献   

16.
It is an established fact that radon progeny can induce lung cancers. However, there is a well-known discrepancy between the epidemiologically derived dose conversion factor for radon progeny (4 mSv/WLM) and the dosimetrically derived value (15 mSv/WLM) (mSv is a unit of the dose while WLM is a unit of exposure to radon progeny). Up to now there is no satisfactory explanation to this. In the present study we propose that microdosimetry will help reduce the discrepancy significantly. The ICRP Human Respiratory Tract Model (HRTM) has been applied to calculate the effective dose conversion factor. All parameters have been kept at their best estimates. Modifications were made in the calculation of the absorbed fractions of alpha particles. In contrast to the ICRP approach where the energy has been considered to be deposited in the layer containing the sensitive cells, we used a microdosimetric approach in which the alpha particles deposit their energy only in the nuclei of sensitive cells. This modification alone has lowered the dose conversion factor by about one-third (from 15 mSv/WLM down to approximately 10 mSv/ WLM). Received: 19 February 2001 / Accepted: 10 July 2001  相似文献   

17.
Effective dose (E) has been developed by the International Commission on Radiological Protection (ICRP) as a dose quantity with a link to risks of health detriment, mainly cancer. It is based on reference phantoms representing average individuals, but this is often forgotten in its application to medical exposures, for which its use sometimes goes beyond the intended purpose. There has been much debate about issues involved in the use of E in medicine and ICRP is preparing a publication with more information on this application. This article aims to describe the development of E and explain how it should be used in medicine. It discusses some of the issues that arise when E is applied to medical exposures and provides information on how its use might evolve in the future. The article concludes with responses to some frequently asked questions about uses of E that are in line with the forthcoming ICRP publication. The main use of E in medicine is in meaningful comparison of doses from different types of procedure not possible with measurable dose quantities. However, it can be used, with appropriate care, as a measure of possible cancer risks. When considering E to individual patients, it is important to note that the dose received will differ from that assessed for reference phantoms, and the risk per Sv is likely to be greater on average in children and less in older adults. Newer techniques allow the calculation of patient-specific E which should be distinguished from the reference quantity.  相似文献   

18.
Age- and sex-specific data were obtained concerning nuclear medicine procedures performed in The Netherlands in 1984. The average annual per capita procedure frequency amounted to 0.011. Using recent organ dose data for a large number of common radiopharmaceuticals (ICRP, Publ. 52/53, 1987) the somatic effective dose equivalent (SED) and the genetically significant dose equivalent (GSD) were calculated. The collective SED yielded 575 person-Sv per annum. The annual per capita SED was 40 μSv. The Genetically Significant Dose turned out to be approximately 3.2 μSv per person per year.  相似文献   

19.
PurposeMonte Carlo (MC) simulations are highly desirable for dose treatment planning and evaluation in radiation oncology. This is true also in emerging nuclear medicine applications such as internal radiotherapy with radionuclides. The purpose of this study is the validation of irtGPUMCD, a GPU-based MC code for dose calculations in internal radiotherapy.MethodsThe female and male phantoms of the International Commission on Radiological Protection (ICRP 110) were used as benchmarking geometries for this study focused on 177Lu and including 99mTc and 131I. Dose calculations were also conducted for a real patient. For phantoms, twelve anatomical structures were considered as target/source organs. The S-values were evaluated with irtGPUMCD simulations (108 photons), with gamma branching ratios of ICRP 107 publication. The 177Lu electrons S-values were calculated for source organs only, based on local deposition of dose in irtGPUMCD. The S-value relative difference between irtGPUMCD and IDAC-DOSE were evaluated for all targets/sources considered. A DVHs comparison with GATE was conducted. An exponential track length estimator was introduced in irtGPUMCD to increase computational efficiency.ResultsThe relative S-value differences between irtGPUMCD and IDAC-DOSE were <5% while this comparison with GATE was <1%. The DVHs dosimetric indices comparison between GATE and irtGPUMCD for the patient led to an excellent agreement (<2%). The time required for the simulation of 108 photons was 1.5 min for the female phantom, and one minute for the real patient (<1% uncertainty). These results are promising and let envision the use of irtGPUMCD for internal dosimetry in clinical applications.  相似文献   

20.
As outlined in NCRP Report No. 160 of the US National Council on Radiation Protection and Measurements (NCRP), the average value of the effective dose to exposed individuals in the United States has increased by a factor of 1.7 over the time period 1982–2006, with the contribution of medical exposures correspondingly increasing by a factor of 5.7. At present, medical contributors to effective dose include computed tomography (50% of total medical exposure), nuclear medicine (25%), interventional fluoroscopy (15%), and conventional radiography and diagnostic fluoroscopy (10%). An increased awareness of medical exposures has led to a gradual shift in the focus of radiation epidemiological studies from traditional occupational and environmental exposures to those focusing on cohorts of medical patients exposed to both diagnostic and therapeutic sources. The assignment of organ doses to patients in either a retrospective or a prospective study has increasingly relied on the use of computational anatomic phantoms. In this paper, we review the various methods and approaches used to construct patient models to include anthropometric databases, cadaver imaging, prospective volunteer imaging studies, and retrospective image reviews. Phantom format types—stylized, voxel, and hybrid—as well as phantom morphometric categories—reference, patient-dependent, and patient-specific—are next defined and discussed. Specific emphasis is given to hybrid phantoms—those defined through the use of combinations of polygon mesh and non-uniform rational B-spline (NURBS) surfaces. The concept of a patient-dependent phantom is reviewed, in which phantoms of non-50th percentile heights and weights are designed from population-based morphometric databases and provided as a larger library of phantoms for patient matching and lookup of refined values of organ dose coefficients and/or radionuclide S values. We close with two brief examples of the use of hybrid phantoms in medical dose reconstruction—diagnostic nuclear medicine for pediatric subjects and interventional fluoroscopy for adult patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号