首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Lack of fragile X mental retardation protein (FMRP) causes fragile X syndrome, a common form of inherited mental retardation. FMRP is an RNA binding protein thought to be involved in translation efficiency and/or trafficking of certain mRNAs. Recently, a subset of mRNAs to which FMRP binds with high affinity has been identified. These FMRP-associated mRNAs contain an intramolecular G-quartet structure. In neurons, dendritic mRNAs are involved in local synthesis of proteins in response to synaptic activity, and this represents a mechanism for synaptic plasticity. To determine the role of FMRP in dendritic mRNA transport, we have generated a stably FMR1-enhanced green fluorescent protein (EGFP)-transfected PC12 cell line with an inducible expression system (Tet-On) for regulated expression of the FMRP-GFP fusion protein. After doxycycline induction, FMRP-GFP was localized in granules in the neurites of PC12 cells. By using time-lapse microscopy, the trafficking of FMRP-GFP granules into the neurites of living PC12 cells was demonstrated. Motile FMRP-GFP granules displayed two types of movements: oscillatory (bidirectional) and unidirectional anterograde. The average velocity of the granules was 0.19 micro m/s with a maximum speed of 0.71 micro m/s. In addition, we showed that the movement of FMRP-GFP labeled granules into the neurites was microtubule dependent. Colocalization studies further showed that the FMRP-GFP labeled granules also contained RNA, ribosomal subunits, kinesin heavy chain, and FXR1P molecules. This report is the first example of trafficking of RNA-containing granules with FMRP as a core constituent in living PC12 cells.  相似文献   

3.
4.
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.  相似文献   

5.
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.  相似文献   

6.
The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in the mRNA metabolism. The absence of FMRP in neurons leads to alterations of the synaptic plasticity, probably as a result of translation regulation defects. The exact molecular mechanisms by which FMRP plays a role in translation regulation have remained elusive. The finding of an interaction between FMRP and the RNA interference silencing complex (RISC), a master of translation regulation, has suggested that both regulators could be functionally linked. We investigated here this link, and we show that FMRP exhibits little overlap both physically and functionally with the RISC machinery, excluding a direct impact of FMRP on RISC function. Our data indicate that FMRP and RISC are associated to distinct pools of mRNAs. FMRP, unlike RISC machinery, associates with the pool of mRNAs that eventually goes into stress granules upon cellular stress. Furthermore, we show that FMRP plays a positive role in this process as the lack of FMRP or a point mutant causing a severe fragile X alter stress granule formation. Our data support the proposal that FMRP plays a role in controlling the fate of mRNAs after translation arrest.  相似文献   

7.
FXR1P is one of two autosomal paralogs of the fragile X mental retardation protein FMRP. The absence of FMRP causes fragile X syndrome, the leading cause of hereditary mental retardation. FXR1P plays an important role in normal muscle development and has been implicated in facioscapulohumeral muscular dystrophy (FSHD). Its absence also causes cardiac abnormalities in both mice and zebrafish. To examine miRNA-mediated regulation of FMRP and FXR1P, we studied their expression in a conditional Dicer knockdown cell line, DT40. We found that FXR1P, but not FMRP, is significantly increased upon Dicer knockdown and the consequent reduction of miRNAs, suggesting that FXR1P is regulated by miRNAs while FMRP is not in DT40 cells. Expression of a luciferase reporter bearing the 3′ untranslated region (3′UTR) of FXR1 was significantly increased in the absence of miRNAs, confirming miRNA-mediated regulation of FXR1P, while a luciferase reporter bearing the FMR1 3′UTR was not. We identified one of the regulatory regions in the 3′UTR of FXR1 by removing a conserved, 8-nucleotide miRNA seed sequence common to miRNAs 25, 32, 92, 363, and 367 and demonstrated loss of miRNA-mediated suppression. Treatment with specific miRNA hairpin inhibitors to each of the miRNAs in the seed sequence showed that miRs 92b, 363, and 367 regulated FXR1P expression. Accordingly, overexpression of the miRNA 367 mimic significantly decreased endogenous FXR1P expression in human cell lines HEK-293T and HeLa. We report for the first time that FXR1P is regulated through miRNA binding, with one site being the miR-25/32/92/363/367 seed sequence.  相似文献   

8.
9.
10.
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regulation remain elusive. Using immunoprecipitation approaches with monoclonal Ab7G1-1 and a new generation of chicken antibodies, we identified Caprin1 as a novel FMRP-cellular partner. In vivo and in vitro evidence show that Caprin1 interacts with FMRP at the level of the translation machinery as well as in trafficking neuronal granules. As an RNA-binding protein, Caprin1 has in common with FMRP at least two RNA targets that have been identified as CaMKIIα and Map1b mRNAs. In view of the new concept that FMRP species bind to RNA regardless of known structural motifs, we propose that protein interactors might modulate FMRP functions.  相似文献   

11.
12.
Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A. Further, the loss of hippocampal S6K1 and the subsequent absence of phospho-FMRP mimic FMRP loss in the increased expression of SAPAP3, a synapse-associated FMRP target mRNA. Together these data reveal a S6K1-PP2A signaling module regulating FMRP function and place FMRP phosphorylation in the mGluR-triggered signaling cascade required for protein-synthesis-dependent synaptic plasticity.  相似文献   

13.
14.
The loss of FMR1 expression due to trinucleotide repeat expansion leads to fragile X syndrome, a cause of mental retardation. The encoded protein, FMRP, is a member of a gene family that also contains the fragile X-related proteins, FXR1P and FXR2P. FMRP has been shown to be a nucleocytoplasmic shuttling protein that selectively binds a subset of mRNAs, forms messenger ribonucleoprotein (mRNP) complexes, and associates with translating ribosomes. Here we describe a cell culture system from which we can isolate epitope-tagged FMRP along with mRNA, including its own message, and at least six other proteins. We identify two of these proteins as FXR1P and FXR2P by using specific antisera and identify a third protein as nucleolin by using mass spectrometry. The presence of nucleolin is confirmed by both reactivity with a specific antiserum as well as reverse coimmunoprecipitation where antinucleolin antiserum immunoprecipitates endogenous FMRP from both cultured cells and mouse brain. The identification of nucleolin, a known component of other mRNPs, adds a new dimension to the analysis of FMRP function, and the approach described should also allow the identification of the remaining unknown proteins of this FMRP-associated mRNP as well as the other bound mRNAs.  相似文献   

15.
16.

Background

Expansion of the CGG trinucleotide repeat in the 5′-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs are locally translated in response to stimuli.

Methodology/Principal Findings

Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 Å, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9.

Conclusions

The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   

17.
Fragile X syndrome is caused by the absence of the fragile X mental-retardation protein (FMRP), an mRNA-binding protein, which may play important roles in the regulation of dendritic mRNA localization and/or synaptic protein synthesis. We have recently applied high-resolution fluorescence imaging methods to document the presence, motility and activity-dependent regulation of FMRP granule trafficking in dendrites and spines of cultured hippocampal neurons. In this study, we show that FMRP granules distribute to F-actin-rich compartments, including filopodia, spines and growth cones during the staged development of hippocampal neurons in culture. Fragile X mental-retardation protein granules were shown to colocalize with ribosomes, ribosomal RNA and MAP1B mRNA, a known FMRP target, which encodes a protein important for microtubule and actin stabilization. The levels of FMRP within dendrites were reduced by disruption of microtubule dynamics, but not by disruption of F-actin. Direct measurements of FMRP transport kinetics using fluorescence recovery after photobleaching in living neurons showed that microtubules were required to induce the mGluR-dependent translocation into dendrites. This study provides further characterization of the composition and regulated trafficking of FMRP granules in dendrites of hippocampal neurons.  相似文献   

18.
19.
Fragile X mental retardation protein (FMRP), the protein responsible for the fragile X syndrome, is an RNA-binding protein involved in localization and translation of neuronal mRNAs. One of the RNAs known to interact with FMRP is the dendritic non-translatable brain cytoplasmic RNA 1 BC1 RNA that works as an adaptor molecule linking FMRP and some of its regulated mRNAs. Here, we showed that the N terminus of FMRP binds strongly and specifically to BC1 and to its potential human analog BC200. This region does not contain a motif known to specifically recognize RNA and thus constitutes a new RNA-binding motif. We further demonstrated that FMRP recognition involves the 5' stem loop of BC1 and that this is the region that exhibits complementarity to FMRP target mRNAs, raising the possibility that FMRP plays a direct role in BC1/mRNA annealing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号