首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phasins (PhaP) are predominantly polyhydroxyalkanoate (PHA) granule-associated proteins that positively affect PHA synthesis. Recently, we reported that the phaR gene, which is located downstream of phaP in Paracoccus denitrificans, codes for a negative regulator involved in PhaP expression. In this study, DNase I footprinting revealed that PhaR specifically binds to two regions located upstream of phaP and phaR, suggesting that PhaR plays a role in the regulation of phaP expression as well as autoregulation. Many TGC-rich sequences were found in upstream elements recognized by PhaR. PhaR in the crude lysate of recombinant Escherichia coli was able to rebind specifically to poly[(R)-3-hydroxybutyrate] [P(3HB)] granules. Furthermore, artificial P(3HB) granules and 3HB oligomers caused the dissociation of PhaR from PhaR-DNA complexes, but native PHA granules, which were covered with PhaP or other nonspecific proteins, did not cause the dissociation. These results suggest that PhaR is able to sense both the onset of PHA synthesis and the enlargement of the granules through direct binding to PHA. However, free PhaR is probably unable to sense the mature PHA granules which are already covered sufficiently with PhaP and/or other proteins. An in vitro expression experiment revealed that phaP expression was repressed by the addition of PhaR and was derepressed by the addition of P(3HB). Based on these findings, we present here a possible model accounting for the PhaR-mediated mechanism of PHA synthesis. Widespread distribution of PhaR homologs in short-chain-length PHA-producing bacteria suggests a common and important role of PhaR-mediated regulation of PHA synthesis.  相似文献   

2.
Polyhydroxyalkanoate (PHA)-producing Bacillus strains possess class IV PHA synthases composed of two subunit types, namely, PhaR and PhaC. In the present study, PHA synthases from Bacillus megaterium NBRC15308(T) (PhaRC(Bm)), B. cereus YB-4 (PhaRC(YB4)), and hybrids (PhaR(Bm)C(YB4) and PhaR(YB4)C(Bm)) were expressed in Escherichia coli JM109 to characterize the molecular weight of the synthesized poly(3-hydroxybutyrate) [P(3HB)]. PhaRC(Bm) synthesized P(3HB) with a relatively high molecular weight (M(n) = 890 × 10(3)) during 72 h of cultivation, whereas PhaRC(YB4) synthesized low-molecular-weight P(3HB) (M(n) = 20 × 10(3)). The molecular weight of P(3HB) synthesized by PhaRC(YB4) decreased with increasing culture time and temperature. This time-dependent behavior was observed for hybrid synthase PhaR(Bm)C(YB4), but not for PhaR(YB4)C(Bm). These results suggest that the molecular weight change is caused by the PhaC(YB4) subunit. The homology between PhaCs from B. megaterium and B. cereus YB-4 is 71% (amino acid identity); however, PhaC(YB4) was found to have a previously unknown effect on the molecular weight of the P(3HB) synthesized in E. coli.  相似文献   

3.
PhaP is a major poly[(R)-3-hydroxybutyrate] [P(3HB)]-granule-associated protein. Its gene expression is controlled by an autoregulated repressor, PhaR, in Paracoccus denitrificans. The packing force of the P(3HB) granule by PhaP is greatly influenced by the number of PhaP molecules. In this study, the effects of DNA-binding-ability-reduced mutations of PhaR on morphological change in the cellular granule formation of P(3HB) were examined under a transmission electron microscope using an Escherichia coli recombinant system. Microscopic observation indicated that stronger packing of P(3HB) granules took place when the number of PhaP molecules was increased by reduction in the DNA-binding ability of PhaR.  相似文献   

4.
The gene expression for phasins (PhaP), which are predominantly polyhydroxyalkanoates (PHAs) granule-associated proteins, is regulated by a repressor protein of PhaR through the dual binding abilities of PhaR to the target DNAs and the granules. In this study, the binding functions of PhaR to poly[(R)-3-hydroxybutyrate] (P(3HB)) were investigated quantitatively by using a quartz crystal microbalance (QCM) technique. Adsorption of PhaR onto a melt-crystallized film of P(3HB) (cr-P(3HB)) was detected as a negative frequency shift of the QCM. The time course of the frequency changes observed for PhaR adsorption was composed of a quick frequency decrease at an initial stage and a subsequent slower frequency decrease for several hours, indicating multilayered adsorption of PhaR molecules onto cr-P(3HB). The initial rapid adsorption, which corresponds to direct adsorption of PhaR molecules onto a bare surface of cr-P(3HB), was a diffusion-controlled process. Strong interactions between PhaR and cr-P(3HB) were also observed as apparently irreversible adsorption. The comparative QCM measurement of PhaR adsorption onto various types of polymers with different aliphatic chemical structures revealed that PhaR was adsorbed onto the surfaces of polymers, including cr-P(3HB), mainly by nonspecific hydrophobic interactions. These results illustrate the high affinity and low specificity for adsorption of PhaR to P(3HB).  相似文献   

5.
PhaP is a major poly[(R)-3-hydroxybutyrate] [P(3HB)]-granule-associated protein. Its gene expression is controlled by an autoregulated repressor, PhaR, in Paracoccus denitrificans. The packing force of the P(3HB) granule by PhaP is greatly influenced by the number of PhaP molecules. In this study, the effects of DNA-binding-ability-reduced mutations of PhaR on morphological change in the cellular granule formation of P(3HB) were examined under a transmission electron microscope using an Escherichia coli recombinant system. Microscopic observation indicated that stronger packing of P(3HB) granules took place when the number of PhaP molecules was increased by reduction in the DNA-binding ability of PhaR.  相似文献   

6.
7.

Background  

Polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR contains a DNA binding domain (DBD) and a PHA granule binding domain (GBD), it anchors to the promoter region of PHA granule-associated protein (PhaP) to repress phaP expression. However, PhaR will bind to PHB granules and be released from phaP promoter region when PHA granules are formed in vivo, initiating expression of phaP gene. Based on this regulatory mechanism, a bacterial two-hybrid system was developed: PhaR was separated into two parts: DBD was used to fuse with the bait, GBD with the prey, and phaP was replaced by a reporter gene lacZ. However, GBD protein expressed in vivo formed inclusion bodies. Thus, PhaP with strong binding ability to PHB granules was employed to replace GBD.  相似文献   

8.
An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well.  相似文献   

9.
Hu D  Chung AL  Wu LP  Zhang X  Wu Q  Chen JC  Chen GQ 《Biomacromolecules》2011,12(9):3166-3173
Polyhydroxyalkanoates (PHA) synthesis genes phbC and orfZ cloned from Ralstonia eutropha H16 were transformed into beta-oxidation weakened Pseudomonas putida KTOY08ΔGC, a mutant of P. putida KT2442. The recombinant P. putida strain termed KTHH06 was able to produce a short-chain-length PHA block copolymer consisting of poly(3-hydroxybutyrate) (P3HB) as one block and poly(4-hydroxybutyrate) (P4HB) as another block. One-dimensional and two-dimensional nuclear magnetic resonance (NMR) clearly indicated the polymer was a diblock copolymer consisting of 20 mol % P3HB as one block and 80 mol % P4HB as another one. Differential scanning calorimetric (DSC) showed that P3HB block melting temperatures (T(m)) in the block copolymer P3HB-b-P4HB was shift to low temperature compared with homopolymer P3HB and a blend of P3HB and P4HB. The block copolymer with a number average molecular weight of 50000 Da and a polydispersity of 3.1 demonstrated a better yield and tensile strength compared with that of its related random copolymer and blend of homopolymers of P3HB and P4HB.  相似文献   

10.
Both the Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) bind to AAV terminal repeat hairpin DNA and can mediate site-specific nicking in vitro at the terminal resolution site (trs) within the terminal repeats. To define the regions of the Rep proteins required for these functions, a series of truncated Rep78 derivatives was created. Wild-type and mutant proteins were synthesized by in vitro translation and analyzed for AAV hairpin DNA binding, trs endonuclease activity, and interaction on hairpin DNA. Amino-terminal deletion mutants which lacked the first 29 or 79 amino acid residues of Rep78 did not bind hairpin DNA, which is consistent with our previous identification of a DNA-binding domain in this region. Progressive truncation of the carboxyl-terminal region of Rep78 did not eliminate hairpin DNA binding until the deletion reached amino acid 443. The electrophoretic mobility of the Rep-specific protein-DNA complexes was inversely related to the molecular weight of the Rep derivative. Analysis of the C-terminal deletion mutants by the trs endonuclease assay identified a region (amino acids 467 to 476) that is essential for nicking but is not necessary for DNA binding. When endonuclease-positive, truncated Rep proteins that bound hairpin DNA were mixed with full-length Rep78 or Rep68 protein in electrophoretic mobility shift assays, a smear of protein-DNA complexes was observed. This smear migrated at an intermediate position with respect to the bands generated by the proteins individually. An antibody recognizing only the full-length protein produced a novel supershift band when included in a mixed binding assay containing Rep68 and a truncated Rep mutant. These experiments suggest that the Rep proteins can form hetero-oligomers on the AAV hairpin DNA.  相似文献   

11.
POU-specific and POU-homeo domains of Oct3 were produced in Echerichia coli for characterization of DNA binding to the octamer sequence. POU domain protein including A, B and H domains could bind to the octamer sequence efficiently and specifically, and DNase I footprint analysis gave an indistinguishable protection pattern between recombinant POU protein of Oct3 and native Oct3 from undifferentiated P19 cells. Truncated mutants, which contained B-specific and H domains or the H domain only, showed no binding activity, indicating that both of POU-specific and POU-homeo domains are essential for binding activity to octamer sequence. Furthermore, a 6 amino acid deletion from the N-terminal region of the A-specific domain is enough to destroy the binding activity. As for trans-activation, the N-terminal region is essential and sufficient. Deletion of the N-terminal proline-rich region rapidly eliminated trans-activating activity. These data strongly indicate the stringent integrity requirements for both trans-activation and DNA-binding domains in Oct3.  相似文献   

12.
13.
DNA-binding domain of human c-Myc produced in Escherichia coli.   总被引:7,自引:6,他引:1       下载免费PDF全文
We have identified the domain of the human c-myc protein (c-Myc) produced in Escherichia coli that is responsible for the ability of the protein to bind sequence-nonspecific DNA. Using analysis of binding of DNA by proteins transferred to nitrocellulose, DNA-cellulose chromatography, and a nitrocellulose filter binding assay, we examined the binding properties of c-Myc peptides generated by cyanogen bromide cleavage, of mutant c-Myc, and of proteins that fuse portions of c-Myc to staphylococcal protein A. The results of these analyses indicated that c-Myc amino acids 265 to 318 were responsible for DNA binding and that other regions of the protein (including a highly conserved basic region and a region containing the leucine zipper motif) were not required. Some mutant c-Mycs that did not bind DNA maintained rat embryo cell-cotransforming activity, which indicated that the c-Myc property of in vitro DNA binding was not essential for this activity. These mutants, however, were unable to transform established rat fibroblasts (Rat-1a cells) that were susceptible to transformation by wild-type c-Myc, although this lack of activity may not have been due to their inability to bind DNA.  相似文献   

14.
The 3'-5' single-stranded DNA(ssDNA) degrading exonuclease I of E. coli directly interacts with the E. coli ssDNA binding protein (EcoSSB). Analytical ultracentrifugation shows that all 4 carboxy-termini of an EcoSSB tetramer bind exonuclease I. Binding is weakened by increasing salt concentrations, indicating the involvement of the negatively charged amino acids of the carboxy-terminus of SSB. Mutant SSB proteins EcoSSBP176S (ssb-113) and EcoSSBF177C do not bindtoexonuclease I while EcoSSBG15D (ssb-3) does bind. In a co-precipitation assay we show that the absence of the lastten amino acids (PMDFDDDIPF) completely abolishes binding of EcoSSB to exonuclease I. The interaction does not depend on the presence of the correct amino-terminal DNA binding domain or the amino acid sequences between the DNA binding domain and the last ten amino acids. A synthetic peptide (WMDFDDDIPF), corresponding to the last nine amino acids of EcoSSB, specifically inhibits the interaction. Both EcoSSBP176S and EcoSSBF177C SSBs bind DNA similar to wild-type EcoSSB, indicating that the phenotype of ssb-113 is not an indication of altered DNA binding. The repair deficiency of either ssb-3 or ssb-113 strain can be complemented by overexpression of the respective other mutant.  相似文献   

15.
As opposed to the vast majority of prokaryotic repressors, the immunity repressor of temperate Escherichia coli phage P2 (C) recognizes non-palindromic direct repeats of DNA rather than inverted repeats. We have determined the crystal structure of P2 C at 1.8 Å. This constitutes the first structure solved from the family of C proteins from P2-like bacteriophages. The structure reveals that the P2 C protein forms a symmetric dimer oriented to bind the major groove of two consecutive turns of the DNA. Surprisingly, P2 C has great similarities to binders of palindromic sequences. Nevertheless, the two identical DNA-binding helixes of the symmetric P2 C dimer have to bind different DNA sequences. Helix 3 is identified as the DNA-recognition motif in P2 C by alanine scanning and the importance for the individual residues in DNA recognition is defined. A truncation mutant shows that the disordered C-terminus is dispensable for repressor function. The short distance between the DNA-binding helices together with a possible interaction between two P2 C dimers are proposed to be responsible for extensive bending of the DNA. The structure provides insight into the mechanisms behind the mutants of P2 C causing dimer disruption, temperature sensitivity and insensitivity to the P4 antirepressor.  相似文献   

16.
采用PCR扩增法得到小鼠TAp63γ野生型及两种缺失突变体的cDNA,3种cDNA与表达载体pGEX-2TK重组构建成GST融合表达质粒并转化感受态E.coli BL21 (DE3),经IPTG诱导了小鼠TAp63γ野生型及两种缺失突变体的可溶性表达. 诱导表达的菌液经离心收集菌体、超声破碎及Triton X-100增溶后获得可溶性表达蛋白粗提液. 利用Glutathione Sepharose 4 Fast Flow亲合层析纯化出电泳均一的3种GST融合蛋白. 凝胶滞留分析证实仅野生型小鼠TAp63γ蛋白能特异结合p53靶序列,经序列比对及同源建模分析,表明小鼠TAp63γ DBD结合区的完整性、关键氨基酸的保守性及三维结构的相似性可能是其DNA结合活性所必需的.  相似文献   

17.
18.
Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by many bacteria and that accumulate as intracellular granules. Phasins (PhaP) are proteins that accumulate during PHA synthesis, bind PHA granules, and promote further PHA synthesis. Interestingly, PhaP accumulation seems to be strictly dependent on PHA synthesis, which is catalyzed by the PhaC PHA synthase. Here we have tested the effect of the Ralstonia eutropha PhaR protein on the regulation of PhaP accumulation. R. eutropha strains with phaR, phaC, and/or phaP deletions were constructed, and PhaP accumulation was measured by immunoblotting. The wild-type strain accumulated PhaP in a manner dependent on PHA production, and the phaC deletion strain accumulated no PhaP, as expected. In contrast, both the phaR and the phaR phaC deletion strains accumulated PhaP to higher levels than did the wild type. This result implies that PhaR is a negative regulator of PhaP accumulation and that PhaR specifically prevents PhaP from accumulating in cells that are not producing PHA. Transfer of the R. eutropha phaR, phaP, and PHA biosynthesis (phaCAB) genes into a heterologous system, Escherichia coli, was sufficient to reconstitute the PhaR/PhaP regulatory system, implying that PhaR both regulates PhaP accumulation and responds to PHA directly. Deletion of phaR caused a decrease in PHA yields, and a phaR phaP deletion strain exhibited a more severe PHA defect than a phaP deletion strain, implying that PhaR promotes PHA production and does this at least partially through a PhaP-independent pathway. Models for regulatory roles of PhaR in regulating PhaP and promoting PHA production are presented.  相似文献   

19.
20.
DNA结合功能域的确定是阐明位点特异性重组酶整合机制的关键,而对酶DNA结合功能域进行突变研究是提高酶整合效率和整合特异性的重要方法.为了鉴定ΦC31位点特异性整合酶的DNA结合功能域,依据对ΦC31整合酶序列的生物信息学分析结果,利用PCR和克隆技术在pET22b原核表达载体上构建ΦC31整合酶重组截短突变体表达质粒,将获得的表达质粒转化入大肠杆菌BL21(DE3)菌株扩大培养并用IPTG诱导融合蛋白的表达,经镍柱纯化获得了纯度达90%以上的重组蛋白,分子量也与预期大小一致,Western印迹确定了重组蛋白的特异性.凝胶迁移滞后实验显示野生型以及截短突变体蛋白ΦC311-528、ΦC311-472、ΦC311-413能与细菌附着位点DNAattB和噬菌体附着位点DNAattP结合的条带,而截短突变体ΦC311-353、ΦC311-279、ΦC311-120观察不到相应的结合条带.6个截短突变体质粒在体内重组活性蓝白斑实验中均表现为蓝斑,显示出皆丧失体内重组活性.研究证实,ΦC31整合酶半胱氨酸富集域(第353~413位氨基酸)具有DNA结合的功能,而C末端缬氨酸富集区(第528~613位氨基酸)也与其重组活性相关.这为进一步了解ΦC31整合酶的结构与功能,最终引导其结构进化,提高其特异性和整合效率奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号