首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic biomechanical evaluation of lifting maximum acceptable loads   总被引:2,自引:0,他引:2  
A biomechanical evaluation of the job-related stresses imposed upon a worker is a potential means of reducing the high incidence rates of manual material handling injuries in industry. A biomechanical model consisting of seven rigid links joined at six articulations has been developed for this purpose. Using data from cinematographic analysis of lifting motions the model calculates: (1) body position from articulation angles, (2) angular velocities and accelerations, (3) inertial moments and forces, and (4) reactive moments and forces at each articulation, including the L5/S1 joint. Results indicated effects of the common task variables. Larger load and box sizes increased the rise times and peak values of both vertical ground reaction forces and predicted L5/S1 compressive forces. However, boxes with handles resulted in higher L5/S1 compressive forces than for boxes without handles. Also, in lifting the larger boxes the subjects did not sufficiently compensate with reduced box weights in order to maintain uniform L5/S1 compressive forces. Smoothed and rectified EMG of erector spinae muscles correlated significantly with L5/S1 compressive forces, while predicted and measured vertical ground reaction forces also correlated significantly, indicating the validity of the model as a tool for predicting job physical stresses.  相似文献   

2.
A biomechanical evaluation of whiplash using a multi-body dynamic model   总被引:5,自引:0,他引:5  
This paper presents a biomechanical evaluation of whiplash injury potential during the initial extension motion of the head in a rear-end collision. A four-segment dynamic model is developed in the sagittal plane for the analysis. The model response is validated using the existing experimental data and is shown to simulate the "S-shape" kinematics of the cervical spine and the resulting dynamics observed in human and cadaver experiments. The model is then used to evaluate the effects of parameters such as collision severity, head/headrest separation, and the initial head orientation in the sagittal plane on the "S-shape" kinematics of the cervical spine and the resulting neck loads. It is shown, for example, that the cervical spine forms an "S-shape" for a range of change in speeds and that at lower and higher speeds changes the spine does not form the "S-shape." Furthermore, it is shown that the "S-shape" formation also depends on the head to headrest separation distance.  相似文献   

3.
Stooping and squatting postures are seen in a number of industries (e.g., agriculture, construction) where workers must work near ground level for extended periods of time. The focus of the current research was to evaluate a knee support device designed to reduce the biomechanical loading of these postures. Ten participants performed a series of sudden loading tasks while in a semisquat posture under two conditions of knee support (no support and fully supported) and two conditions of torso flexion (45 and 60 degrees ). A weight was released into the hands of the participants who then came to steady state while maintaining the designated posture. As they performed this task, the EMG responses of the trunk extensors (multifidus and erector spinae) were collected, both during the "sudden loading" phase of the trial as well as the steady weight-holding phase of the trial. As expected, the effects of torso flexion angle showed significant decreases in the activation of the multifidus muscles with greater torso angle (indicating the initiation of the flexion-relaxation response). Interestingly, the results showed that the knee support device had no effect on the activation levels of the sampled muscles, indicating that the loss of the degree of freedom from the ankle joint during the knee support condition had no impact on trunk extensor muscle response. The a priori concern with regard to these supports was that they would tend to focus loading on the low back and therefore would not serve as a potential ergonomic solution for these stooping/semisquatting tasks. Because the results of this study did not support this concern, further development of such an intervention is underway.  相似文献   

4.
By means of video recording, measurement of ground reaction forces, and biomechanical modeling of the lower part of the body, the low back loading of nurses during patient handling can be estimated. In this study the force exerted on the bedside by a nurse during different patient handling tasks was measured, and the contribution to the moment at the L4/L5 joint was investigated. It is shown that the bedside reaction moment contributes significantly to the total moment, and could lead to substantial over-estimation if not appropriately included in the calculations, when using an upward biomechanical model for estimating the spinal load of nurses during patient handling tasks.  相似文献   

5.
A three-dimensional scalable biomechanical model of the four fingers of the hand to evaluate power grip is proposed. The model has been validated by means of reproducing an experiment in which the subjects exerted the maximal voluntary grasping force over cylinders of different diameters. The model is used to simulate the cylinder grip for two hand sizes and for five different handle diameters. The reduction of the muscle forces using different handle diameters has been studied. The model can be applied to the design and evaluation of handles for power grip and to the study of power grasp for normal and abnormal hands.  相似文献   

6.
With mechanical loading as the main risk factor for LBP in mind, exoskeletons are designed to reduce the load on the back by taking over a part of the required moment. The present study assessed the effect of a passive exoskeleton on back and abdominal muscle activation, hip and lumbar flexion and on the contribution of both the human and the exoskeleton to the L5/S1 net moment, during static bending at five different hand heights. Two configurations of the exoskeleton (LOW & HIGH) differing in angle-torque characteristics were tested. L5/S1 moments generated by the subjects were significantly reduced (15–20% for the most effective type) at all hand heights. LOW generated 4–11 Nm more support than HIGH at 50%, 25% and 0% upright stance hand height and HIGH generated 4–5 Nm more support than LOW at 100% and 75%. Significant reductions (11–57%) in back muscle activity were found compared to WITHOUT for both exoskeletons for some conditions. However, EMG reductions compared to WITHOUT were highly variable across subjects and not always significant. The device allowed for substantial lumbar bending (up to 70°) so that a number of participants showed the flexion-relaxation phenomenon, which prevented further reduction of back EMG by the device and even an increase from 2% to 6% MVC in abdominal activity at 25% hand height. These results indicate that flexion relaxation and its interindividual variation should be considered in future exoskeleton developments.  相似文献   

7.
Sudden, unexpected loading on the low back is associated with a high incidence of low back pain. Experiments in which sudden loading was applied during standing revealed increased compression forces on the spine and increased trunk angle, which may cause injury to the spine and hence explain this association. During a more dynamic daily activity, i.e. lifting, this could not be demonstrated, which may be due to experimental constraints. We therefore reinvestigated the loading of the low back when subjects were lifting an unexpectedly heavy object. Ten males lifted boxes, weighing 1.6 or 6.6 kg, at a self-selected lifting velocity. In some trials the mass of these boxes was unexpectedly increased by 10 kg. The ground reaction forces, body movements and trunk muscle activity were measured and from these, the L5/S1 torques and compression forces were estimated. Underestimation of the mass did not lead to an increase in low back loading. This finding was independent of the mass the subjects were expecting to lift. In conclusion, no evidence was found to support inference regarding causality of the association between sudden loading and low back pain during whole body lifting movements.  相似文献   

8.
IntroductionThe aim of this study was to determine the within- and between-day reliability of lower limb biomechanical variables collected during single leg squat (SLS) and single leg landing (SLL) tasks.Methods15 recreational athletes took part in three testing sessions, two sessions on the same day and another session one week later. Kinematic and kinetic data was gathered using a ten-camera movement analysis system (Qualisys) and a force platform (AMTI) embedded into the floor.ResultsThe combined averages of within-day ICC values (ICCSLS = 0.87; ICCSLL = 0.90) were higher than between-days (ICCSLS = 0.81; ICCSLL = 0.78). Vertical GRF values (ICCSLS = 0.90; ICCSLL = 0.98) were more reliable than joint angles (ICCSLS = 0.85; ICCSLL = 0.82) and moments (ICCSLS = 0.83; ICCSLL = 0.87).DiscussionThis study demonstrates that all joint angles, moments, and vertical ground reaction force (GRF) variables obtained during both tasks showed good to excellent consistency with relatively low standard error of measurement values. These findings would be of relevance to practitioners who are using such measures for screening and prospective studies of rehabilitative techniques.  相似文献   

9.
The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.  相似文献   

10.
Episiotomy is still a controversy issue among physicians, despite the enormous growth of clinical research. Therefore, the potential of numerical modeling of anatomical structures to simulate biomechanical processes was exploited to realize quantitatively the real effects of the episiotomy and its consequences on the pelvic floor muscle. As such, a numerical model was used composed of pelvic floor muscles, a surface delimiting the anterior region, and a fetus body. A normal vaginal delivery without and with different episiotomies was simulated with the fetus in vertex presentation and occipitoanterior position. According to our numerical results, a mediolateral episiotomy has a protective effect, reducing the stress on the muscles, and the force required to delivery successfully up to 52.2 %. The intervention also has benefits on muscle injury, reducing the damage to a small zone. This study demonstrates the feasibility of using a computational modeling approach to study parturition, namely the capability to isolate and evaluate the mechanical significance of a single feature. It must, however, be taken into account that the numerical model does not assess problems that may occur as blood loss, infections and others, so it is necessary to examine whether the benefits of an intervention outweigh the risks.  相似文献   

11.
Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (p<0.001) and a significant increase in local dynamic stability (p<0.05); both stability measures were moderately to strongly related to one another (r=-0.55 to -0.71). With an increase in lifting rate (constant load), there was also a significant increase in mean and maximum spine rotational stiffness (p<0.01); however, there was a non-significant decrease in the minimum rotational stiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations.  相似文献   

12.
We examined the effects of a load's mass and position on body sway during standing with a load on the back. Three healthy male subjects participated in this experiment. The subjects supported loads of 23kg, 33kg, and 43kg on their backs using a carrier frame. They were asked to stand for 75s on a force platform with their eyes open while being as quiet as possible. Time series data of center-of-pressure (COP) were collected at a sampling rate of 50Hz during the last 60s of the 75s standing period. The COP was measured under three conditions in terms of the load position on the frame: lower (close to the hip), middle, and upper (close to the shoulder). All subjects showed that the lower the position of the load, the more anteriorly the mean COP coordinate was located in the anteroposterior (AP) direction, and the smaller the total distance of the COP trajectories became. Regarding carrying the heavier loads, each subject showed a specific tendency in the mean AP coordinate. The three subjects had different physical characteristics in terms of body height and experience at carrying heavy loads. These results suggest that the examintion of the COP in a static posture can help our understanding of individual information on the posture supporting loads and the general positioning of the body.  相似文献   

13.
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.  相似文献   

14.
The cortical activation was estimated by the event-related potential (ERPs) methods during selection tasks of lateralized visual stimuli requiring different forms of attention: 1) form of stimuli, 2) stimuli position, 3) combined attention of form and position. The ERPs were recorded in 15 young healthy adults in 6 leads P3, P4, T3, T4, T5, T6, and endogenous ERPs components: CNV (contingent negative variation), N1, P3 and the complex [N1-P3]. Differences between the ERPs at "attended" and "non-attended" stimuli were considered as indices of selection attention of particular feature of visual stimuli. Such indices of form and position were revealed selectivity in parietal leads. The most eminent ERPs components, the pronounced activation gradient during increase of attention demands were revealed in parietal regions (vs. temporal ones). In our opinion, parietal cortex has a high priority in selection attention system.  相似文献   

15.
The purpose of the study was to compare the electromyographic (EMG) activity of the trunk muscles between normal subjects and chronic low back pain (CLBP) patients during standardized trunk movements. Thirty-three male subjects (18 normals, 15 suffering from non specific CLBP) aged between 35 and 45 yr participated. A biomechanical analysis involving the recording of EMG signals from 12 trunk muscles, the kinematics of trunk segments and the computation of L5/S1 moments was performed. The subjects performed flexion-extension and lateral bending (left and right) tasks (three complete cycles) with and without a 12 kg load. Between group comparisons were performed on the full cycle average pattern of all biomechanical variables for each task. The reliability of EMG variables was evaluated for 10 subjects (5 normals and 5 CLBP) who performed the tasks on three different days. The reliability of EMG amplitude values was generally excellent for agonist muscles but poor to moderate for antagonists. The EMG amplitude analysis revealed significant differences between groups for some muscles (left lumbar and thoracic erector spinae). The abnormal (asymmetric) EMG patterns detected among CLBP patients were not explained by postural asymmetries.  相似文献   

16.
Identification of kinetic variables in different masks of foot is important for the evaluation and treatment of chronic low back pain. The aim of this study was to investigate the effect of chronic idiopathic low back pain on kinetic variables of gait in different foot masks. 11 idiopathic chronic low back pain patients and 13 healthy matched controls participated in this study. Using Emed foot-scanner system, the ground reaction force and impulse were measured during barefoot normal walking. Then, the average footprints were divided into 10 masks using the Automask program and the data were extracted using Multimask Evaluation programs. The low back pain disability was measured by Quebec questionnaire. Our results revealed that the ground reaction force and impulse in medial and lateral midfoot and hallux masks of patients were significantly lower than controls. Furthermore, these patients demonstrated greater ground reaction force and impulse in 3–5th metatarsals mask than control group. There was a significant interaction between the low back pain and the foot masks factors. In conclusion, the ground reaction forces and impulses in different areas of foot are affected by low back pain. Therefore, the kinetic gait analysis should be considered as an appropriate tool in evaluation and prescribing proper treatment program in low back pain patients.  相似文献   

17.
There is limited information in the literature related to the lower back loading in patients with LBP, particularly those with non-chronic LBP. Toward addressing such a research gap, a case-control study was conducted to explore the differences in lower back mechanical loads between a group of females (n = 19) with non-chronic, non-specific LBP and a group of asymptomatic females (n = 19). The differences in lower back mechanical loads were determined when participants completed one symmetric lowering and lifting of a 4.5 kg load at their preferred cadence. The axial, shearing, and moment components of task demand at the time of peak moment component as well as measures of peak trunk kinematics were analyzed. Patient vs. asymptomatic group performed the task with smaller peak thoracic rotation and peak lumbar flexion. While no differences in the moment component of task demand on the lower back between the patients and controls were found, the shearing (40–50 age group) and axial components of task demand were, respectively, larger and smaller in patients vs. controls. Whether alterations in lower back loads in patients with non-chronic LBP are in response to pain or preceded the pain, the long-term exposure to abnormal lower back mechanics may adversely affect spinal structure and increase the likelihood of further injury or pain. Therefore, the underlying reason(s) as well as the potential consequence(s) of such altered lower back mechanics in patients with non-chronic LBP should to be further investigated.  相似文献   

18.
ObjectiveTo investigate neuromuscular activation of quadriceps bellies during different tasks in patients before and after total knee arthroplasty (TKA).MethodsTwenty-six patients scheduled for TKA and 16 control subjects performed three isometric tasks: knee extension (KE), hip flexion (HF), hip flexion with contralateral hip extension (HFE). Surface electromyography signals of rectus femoris, vastus medialis and vastus lateralis were collected the day before (T0), at one (T1) and three (T2) days after surgery, whereas control subjects underwent a single evaluation. The Root Mean Square peak normalized for its highest value during the three tasks (nRMS-peak) was used as index of maximum neuromuscular activation for each belly. Sixteen patients performed the postoperative assessment, due to the placement of an elastomeric pump aimed at reducing pain in 10 patients.ResultsPatients showed lower rectus femoris nRMS-peak during KE compared to HF and HFE before and after surgery (p < 0.001), as occurred in control subjects. Differently from control subjects, patients showed higher vastus medialis and vastus lateralis nRMS-peak during HF compared to KE at T1 (p = 0.008) and T2 (p = 0.039).ConclusionTKA modified quadriceps neuromuscular activation during different tasks performed the same biomechanical condition. These findings may be considered in planning physiotherapy interventions after TKA.  相似文献   

19.
Many methodologies exist to predict the hip joint center (HJC), of which regression based on anatomical landmarks appear most common. Despite the fact that predicted HJC locations vary depending upon chosen method, inter-study comparisons and inferences about populations are commonly made. The purpose of this study was to create a normative database of hip and knee biomechanics during walking, running, and single leg landings based on five commonly utilized HJC methods to serve as a reference for inter-study comparisons. Secondarily, we devised to provide comparisons of peak knee angles and hip angles, moments, and powers from the five HJC methods. Thirty healthy young adults performed walking, running, and single leg landing tasks at self-selected speeds (walking/running) and at 90% of their maximum jump height (landing). Three-dimensional motion capture and ground reaction forces were collected during all tasks. Five different HJC prediction methods: Bell, Davis, Hara, Harrington, and Greater Trochanter were implemented separately in a 6 degree of freedom model. Predicted HJC locations, direct kinematics, and inverse dynamics were computed for all tasks. Predicted HJC mediolateral, anteroposterior, and superior-inferior locations differed between methods by an average of 1.3, 2.9, and 1.4 cm, respectively. A database was created using the mean of all subjects for all five methods. In addition, one-way ANOVAs were used to compare triplanar peak angles, moments, and powers between the methods. The database of hip and knee biomechanics illustrates (1) variability between methods increases with more dynamic tasks (running/landing vs. walking) and (2) frontal and transverse plane hip and knee biomechanics are more variable between methods. Comparisons between methods found 38 and 16 main effect differences in hip and knee biomechanics, respectively. The Greater Trochanter method provided the most differences compared with other methods, while the Davis method provided the least differences. The database constructed provides an important reference for inter-study comparisons and details the impact of anatomical regression methods for predicting the HJC.  相似文献   

20.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号