首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we have shown that DAB389IL-2, a recombinant fusion toxin targeting IL-2R bearing cells, suppressed disease in the rat experimental autoimmune encephalomyelitis (EAE) model of acute multiple sclerosis (MS). Our present study demonstrates that DAB389IL-2 can also effectively suppress acute (A)-EAE, relapsing (R)-EAE and chronic (C)-EAE in mouse demyelinating models. DAB389IL-2 significantly suppressed mitogenic proliferation of spleen cells while mutant fusion proteins DAglu53B389IL-2 and DAB389IL-28-10 did not. EAE was successfully suppressed when DAB389IL-2 was administered in various regimens between days 1 and 15 post immunization in all three models. CD4+IL-2R+ cells were reduced in the spleen but not in the lymph nodes of DAB389IL-2-treated mice during A-EAE while the number of CD8+ cells was unchanged. DAB389IL-2 also significantly reduced the number of CD4+, CD8+, CD25+, TCRγδ+ phenotype and CD11b+ macrophages/microglia within spinal cord lesions. These data strongly suggest that DAB389IL-2 specifically targeted myelin protein-activated CD4+ T cells and strengthens the argument for the use of DAB389IL-2 in treatment strategies for MS.  相似文献   

2.
We have used site-directed mutagenesis to examine the role played by Arg191, Arg193, and Arg194 of the fusion toxin DAB486-IL-2 in the intoxication of high affinity interleukin-2 receptor-bearing T-lymphocytes. These arginine residues are positioned in the proteolytically sensitive 14-amino acid loop subtended by the disulfide bond between Cys187 and Cys202 in this fusion toxin. DAB486-IL-2 was formed by the genetic substitution of the native diphtheria toxin receptor binding domain with human interleukin-2 (Williams, D.P., Parker, K., Bacha, P., Bishai, W., Borowski, M., Genbauffe, F., Strom, T.B., and Murphy, J.R. (1987) Protein Eng. 1, 493-498). We demonstrate that substitution of Arg194 with Gly results in a 1000-fold loss of DAB486-IL-2 potency. Since trypsin "nicking" of the Gly194 mutant restores biologic activity, we conclude that Arg194 is required for the cellular processing of the fusion toxin which results in the release of fragment A into the cytosol.  相似文献   

3.
We have used cassette and deletion mutagenesis to analyze the structural features of fragment B-related sequences in the fusion toxin DAB486-IL-2 (where IL-2 represents interleukin-2) that are necessary for the efficient delivery of fragment A to the cytosol of target cells. We demonstrate that whereas an intact disulfide bond between Cys461 and Cys471 may be required for the cytotoxic action of native diphtheria toxin, this bond is not required for the cytotoxic action of DAB486-IL-2. The in-frame deletion of the 97 amino acids from Thr387 to His485 of DAB486-IL-2 increases both the potency and the apparent dissociation constant (Kd) of the resulting fusion toxin for high affinity interleukin-2 receptor-bearing target cells. In contrast, the inframe deletion of either the 191 amino acids between Asp291 and Gly483 or the 85 amino acids between Asn204 and Ile290 results in a 1000-fold loss in potency. These regions contain the putative membrane-spanning regions and the amphipathic membrane surface-associating regions of fragment B, respectively. These results indicate that the efficient delivery of the ADP-ribosyltransferase from DAB486-IL-2 to the cytosol requires the membrane-associating domains of fragment B. This function has been postulated to play a role in the diphtherial intoxication of eukaryotic cells. However, unlike native diphtheria toxin, fragment B sequences distal to Thr387 do not enhance the potency of DAB486-IL-2.  相似文献   

4.
We have used site-directed insertion and point mutagenesis in an attempt to increase the cytotoxic potency and receptor-binding affinity of the diphtheria-toxin-related interleukin-2 (IL-2) fusion toxins. Previous studies have demonstrated that both the DAB486-IL-2 and DAB389-IL-2 forms of the fusion toxin consist of three functional domains: the N-terminal fragment-A-associated ADP-ribosyltransferase, the hydrophobic-membrane-associating domains, and the C-terminal receptor-binding domain of human IL-2. By insertion mutagenesis we have increased the apparent flexibility of the polypeptide chain between the membrane-associating domains and the receptor-binding domain of this fusion toxin. In comparison to DAB486-IL-2, the cytotoxic potency of the insertion mutants was increased by approximately 17-fold for high-affinity IL-2-receptor-bearing cell lines in vitro. Moreover, competitive displacement experiments using [125I]rIL-2 demonstrate that the increase in cytotoxic potency correlates with an increase in receptor-binding affinity for both the high and intermediate forms of the IL-2 receptor.  相似文献   

5.
近年来IL-13受体IL-13Rα2的研究已经成为一个新兴热点,IL-13Rα2在许多肿瘤细胞细胞表面存在特异性高表达,而在正常组织中不表达或表达量很低,通过IL-13Rα2介导的毒素融合蛋白靶向治疗肿瘤也已成为肿瘤诊断和免疫治疗研究中的重要方面。随着对IL-13Rα-结构和功能及其与肿瘤关系研究的不断深入,将为肿瘤的靶向治疗提供新的思路,为肿瘤的临床治疗提供新的理论依据。对IL-13Rα2在不同肿瘤中的表达及IL-13和不同毒素融合得到的毒素融合蛋白在细胞和动物体内等不同水平上对肿瘤治疗的作用做出了相应概括,并对通过IL-13Rα2介导的毒素融合蛋白治疗肿瘤机理的研究以及融合蛋白方法改进及其它相关治疗方法等方面作出综述。  相似文献   

6.
应用PCR技术分别扩增出编码白喉毒素氨基端 389个氨基酸 (DT3 89)的基因片段及人IL 2全基因 ,将两基因串连插入 pET3a载体 ,构建成含有DT3 89 IL 2融合基因的表达载体 ,转化大肠杆菌BL2 1,经表达、纯化后 ,用3 H Leucine掺入法测定其对HUT 10 2细胞的蛋白合成抑制作用。SDS PAGE电泳分析表明 ,表达产物分子质量 (Mr)约为 5 8kD ;重组嵌合毒素能够特异性地抑制高表达IL 2受体的HUT 10 2细胞的蛋白生物合成 ,且有一定的剂量反应关系 ,其细胞半数抑制浓度 (IC50 )约为 3 3× 10 -11mol/L。为进一步研制特异性的抗IL 2受体高表达肿瘤和相关疾病的药物打下了基础。  相似文献   

7.
The P2X7 receptor (P2X7R) is uniquely associated with two distinct cellular responses: activation of a dye-permeable pathway allowing passage of molecules up to 900 Da and rapid release of the pro-inflammatory cytokine, interleukin-1β (IL-1β), from activated macrophage. How this dye uptake path forms and whether it is involved in IL-1β release has not been known. Pannexin-1 is a recently identified protein found to physically associate with the P2X7R. Inhibition of pannexin-1 does not alter P2X7R ion channel activation or associated calcium flux but blocks one component of P2X7R-induced dye uptake and unmasks a slower, previously undetected, dye uptake pathway. Inhibition of pannexin-1 blocks P2X7R-mediated IL-1β release from macrophage as well as release mediated by other stimuli which couple to activation of capase-1 and additionally inhibits the release of interleukin-1α, a member of the IL-1 family whose processing does not require caspase-1 activation. Thus, pannexin-1 is linked to both dye uptake and IL-1β release but via distinct mechanisms.  相似文献   

8.
Cytolethal distending toxin (Cdt) is produced by Gram-negative bacteria of several species. It is composed of three subunits, CdtA, CdtB, and CdtC, with CdtB being the catalytic subunit. We fused CdtB from Haemophilus ducreyi to the N-terminal 255 amino acids of Bacillus anthracis toxin lethal factor (LFn) to design a novel, potentially potent antitumor drug. As a result of this fusion, CdtB was transported into the cytosol of targeted cells via the efficient delivery mechanism of anthrax toxin. The fusion protein efficiently killed various human tumor cell lines by first inducing a complete cell cycle arrest in the G2/M phase, followed by induction of apoptosis. The fusion protein showed very low toxicity in mouse experiments and impressive antitumor effects in a Lewis Lung carcinoma model, with a 90% cure rate. This study demonstrates that efficient drug delivery by a modified anthrax toxin system combined with the enzymatic activity of CdtB has great potential as anticancer treatment and should be considered for the development of novel anticancer drugs.  相似文献   

9.
10.
Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens.

Abbreviations

aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.  相似文献   

11.
Nicotiana tabacum var. Samsun was transformed via Agrobacterium-mediated transformation with a gene encoding the cholera toxin B subunit (CTB) of Vibrio cholerae, modified to contain a sequence coding for an endoplasmic reticulum retention signal (SEKDEL), under the control of the cauliflower mosaic virus 35S promoter. Total protein from the transgenic leaf tissue was isolated and an aliquot containing 5 g recombinant CTB was injected intradermally into Balb/c (H2Kd) mice. CTB-specific serum IgG was detected in animals that had been administered plant-expressed or native purified CTB. A T-cell proliferation study using splenocytes and cytokine estimations in supernatants generated by in vitro stimulation of macrophages isolated from the immuno-primed animals was carried out. Inhibition of proliferation of T lymphocytes was observed in splenic T lymphocytes isolated from animals injected with either native or plant-expressed CTB. Macrophages isolated from mice immunised with native or plant-expressed CTB showed enhanced secretion of interleukin-10 but secretion of lipopolysaccharide-induced interleukin-12 and tumor necrosis factor alpha was inhibited. These studies suggest that plant-expressed protein behaved like native CTB with regards to effects on T-cell proliferation and cytokine levels, indicating the suitability of plant expression systems for the production of bacterial antigens, which could be used as edible vaccine. The transgene was found to be inherited in the progeny and was expressed to yield a pentameric form of CTB as evident by its interaction with GM1 ganglioside.Abbreviations BAP 6-Benzylaminopurine - Con A Concanavilin A - CTB Cholera toxin B subunit - ctxB Gene encoding cholera toxin B subunit - ELISA Enzyme-linked immunosorbent assay - HRP Horseradish peroxidase - IL-10 Interleukin-10 - IL-12 Interleukin-12 - LPS Lipopolysaccharide - NAA Naphthaleneacetic acid - PBS Phosphate-buffered saline - TNF Tumour necrosis factor alphaCommunicated by H. Uchimiya  相似文献   

12.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   

13.
Fynomers are small binding proteins derived from the human Fyn SH3 domain. Using phage display technology, Fynomers were generated inhibiting the activity of the proinflammatory cytokine interleukin-17A (IL-17A). One specific Fynomer called 2C1 inhibited human IL-17A in vitro with an IC50 value of 2.2 nm. Interestingly, when 2C1 was genetically fused to the Fc part of a human antibody via four different amino acid linkers to yield bivalent IL-17A binding proteins (each linker differed in length), the 2C1-Fc fusion protein with the longest linker displayed the most potent inhibitory activity. It blocked homodimeric IL-17A with an IC50 value of 21 pm, which corresponds to a hundredfold improved IC50 value as compared to the value obtained with monovalent Fynomer 2C1. In contrast, the 2C1-Fc fusion with the shortest linker showed only an ∼8-fold improved IC50 value of 260 pm. Furthermore, in a mouse model of acute inflammation, we have shown that the most potent 2C1-Fc fusion protein is able to efficiently inhibit IL-17A in vivo. With their suitable biophysical properties, Fynomer-Fc fusion proteins represent new drug candidates for the treatment of IL-17A mediated inflammatory conditions such as psoriasis, psoriatic arthritis, or rheumatoid arthritis.  相似文献   

14.
We have genetically replaced the diphtheria toxin receptor binding domain with a synthetic gene encoding interleukin-2 (IL-2) and a translational stop signal. The diphtheria toxin-related T-cell growth factor fusion gene encodes a 70 586-d polypeptide, pro-IL-2-toxin. The mature form of IL-2-toxin has a deduced mol. wt of 68,086 and is shown to be exported to the periplasmic compartment of Escherichia coli (pABI508), and contain immunologic determinants intrinsic to both its diphtheria toxin and IL-2 components. IL-2-toxin has been purified from periplasmic extracts of recombinant strains of E. coli (pABI508) by immunoaffinity chromatography using immobilized anti-IL-2. The purified chimeric toxin is shown to selectively inhibit protein synthesis in IL-2 receptor bearing targeted cells, whereas cell lines which do not express the IL-2 receptor are resistant to IL-2-toxin action.  相似文献   

15.
During the proliferative burst after Ag recognition, T cells express cell-surface, high-affinity IL-2R. The importance of IL-2R+ T cells in supporting/mediating tissue injury has been documented by the ability of mAb anti-IL2R therapies to prevent allograft rejection and autoimmunity. The delayed-type hypersensitivity (DTH) response, an experimental model of T-dependent immunity, offers the possibility of studying responses mounted against defined Ag. We previously reported that the chimeric IL-2 toxin (DAB486-IL-2) prevents DTH responses and selectively eliminates activated IL-2R bearing CD4 and CD8 T cells from lymph nodes draining the site of inflammation. We have examined the duration of immunosuppression and relative specificity of action of DAB486-IL-2 and anti-CD3 mAb for Ag-activated clones in a murine model of DTH using two different noncross-reacting haptens. Treatment with DAB486-IL-2 generates a state of selective unresponsiveness to subsequent challenge with the hapten introduced during the therapeutic period. Immediately after cessation of DAB486-IL-2 therapy, immunization with an unrelated hapten induces a normal vigorous immune response. By comparison, anti-CD3 mAb treatment causes a broad immunosuppression because unrelated haptens introduced after anti-CD3 therapy do not evoke a vigorous immune response. After cessation of DAB486-IL-2 toxin treatment response to the hapten is eventually restored probably by cells trafficking from the thymus, because thymectomized hosts remain unresponsive to the hapten. Taken together these data reinforce the role of the IL-2R as an important target for immunosuppression in T cell-mediated immune reactions. DAB-486-IL-2 treatment confers highly selective immunosuppression.  相似文献   

16.
Interleukin-22 (IL-22) plays an important role in the regulation of immune and inflammatory responses in mammals. The IL-22 binding protein (IL-22BP), a soluble receptor that specifically binds IL-22, prevents the IL-22/interleukin-22 receptor 1 (IL-22R1)/interleukin-10 receptor 2 (IL-10R2) complex assembly and blocks IL-22 biological activity. Here we present the crystal structure of the IL-22/IL-22BP complex at 2.75 Å resolution. The structure reveals IL-22BP residues critical for IL-22 binding, which were confirmed by site-directed mutagenesis and functional studies. Comparison of IL-22/IL-22BP and IL-22/IL-22R1 crystal structures shows that both receptors display an overlapping IL-22 binding surface, which is consistent with the inhibitory role played by IL-22 binding protein.

Structured summary

MINT-7010533: IL-22 BP (uniprotkb:Q969J5) and IL-22 (uniprotkb:Q9GZX6) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

17.
Induction of specific immunological unresponsiveness by oral autoantigens such as glutamic acid decarboxylase 65 (GAD65) is termed oral tolerance and may be a potential therapy for autoimmune diabetes. However, the requirement for large amounts of protein will limit clinical testing of autoantigens, which are difficult to produce. Mucosal adjuvants such as cholera toxin B subunit (CTB) may lower the level of autoantigens required. Here we describe cloning, expression, purification and identification study of the CTB and triple GAD531–545 epitopes fusion gene. The fusion gene was ligated via a flexible hinge tetrapeptide and expressed as a soluble protein in Escherichia coli BL21 (DE3) driven by the T7 promoter. We purified the recombination protein from the cell lysate and obtained approximately 2.5 mg of CTB–GAD(531–545)3 per liter of culture with greater than 90% purity by a Ni–NTA resin column. The bacteria produced this protein as the pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and GAD65. Further studies revealed that oral administration of bacterial CTB–GAD(531–545)3 fusion protein showed the prominent reduction in pancreatic islet inflammation in non-obese diabetic mice. The results presented here demonstrate that the bacteria bioreactor is an ideal production system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes.  相似文献   

18.
Interleukin-6 (IL-6) plays an important role in liver regeneration and protection against liver damage. In addition to IL-6 classic signaling via membrane bound receptor (mIL-6R), IL-6 signaling can also be mediated by soluble IL-6R (sIL-6R) thereby activating cells that do not express membrane bound IL-6R. This process has been named trans-signaling. IL-6 trans-signaling has been demonstrated to operate during liver regeneration. We have developed methods to specifically block or mimic IL-6 trans-signaling. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL-6 trans-signaling whereas an IL-6/sIL-6R fusion protein (Hyper-IL-6) mimics IL-6 trans-signaling. Using these tools we investigate the role of IL-6 trans-signaling in CCl4 induced liver damage. Blockade of IL-6 trans-signaling during CCl4 induced liver damage led to higher liver damage, although induction of Cyp4502E1 and thus bioactivation of CCl4 was unchanged. Depletion of neutrophils resulted in reduced liver transaminase levels irrespective of IL-6 trans-signaling blockade. Furthermore, IL-6 trans-signaling was important for refilling of hepatocyte glycogen stores, which were depleted 24 h after CCl4 treatment. We conclude that IL-6 trans-signaling via the soluble IL-6R is important for the physiologic response of the liver to CCl4 induced chemical damage.  相似文献   

19.
Interleukin-2 (IL-2) is a cytokine that regulates proliferation, differentiation and survival of various lymphoid cell subsets. Its actions are mediated through its binding to the IL-2 receptor which is composed of three subunits (IL-2Rα, IL-2Rβ and γc). Only β and γc have been shown to transduce intra cellular signals. The γc chain is shared by the interleukin-2, 4, 7, 9, 15 and 21 receptors, and is essential for lymphocyte functions. The regulation of γc expression level is therefore critical for the ability of cells to respond to these cytokines. In the present work, we show that the IL-2R constitutively associates with the ubiquitin ligase NEDD4-2, and to a lesser extent NEDD4-1. We identified the specific binding site on γc. And we show that the loss of NEDD4 association on γc is accompanied by a dramatic increase of the half-life of the receptor subunit.  相似文献   

20.
Recent evidence suggests that interleukin-1β (IL-1β), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1β synthesis in the hippocampus is dependent on P2X7 receptor (P2X7R), which is an ionotropic receptor of ATP. To substantiate the role of P2X7R in both brain IL-1β expression and memory processes, we examined the induction of IL-1β mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X7 receptor knockout mice (P2X7R−/−) following a spatial memory task. The spatial recognition task induced both IL-1β mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X7R−/− mice. Remarkably, P2X7R−/− mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X7R plays a critical role in spatial memory processes and the associated hippocampal IL-1β mRNA synthesis and c-Fos activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号