首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of physostigmine, tetrahydroaminoacridine (THA) and LF-14 [3,3-dimethyl-1(4- amino-3-pyridyl)urea], a 3,4-diaminopyridine derivative, were compared on inhibition of acetyl- cholinesterase (AChE) activity, and release of [3H]acetylcholine (ACh) from rat brain cortical and hippocampal slices. All three compounds caused a concentration dependent inhibition of AChE, with an order of potency physostigmine > THA > LF-14. The electrically stimulated release of ACh from hippocampal and cortical slices was decreased by 10−5M physostigmine, although the effect was significant only in cortex. THA (5 × 105M) caused a slight, but not significant, decrease in ACh release from both tissues. In contrast, LF-14 (5 × 10−5 M) caused an approx. 3-fold enhancement of stimulated release. When AChE was inhibited by prior addition of physostigmine, THA caused only a slight enhancement of ACh release, whereas LF-14 greatly increased release. ACh release was also reduced by stimulation of presynaptic muscarinic receptors with oxotremorine. In this case, THA had no effect on ACh release, while LF-14 was able to reverse the inhibition. This study suggests that LF-14 acts to promote ACh release through blocking K+ channels, and has a less potent AChE inhibitory effect. It is possible that a compound like LF-14 could be useful in treating diseases of cholinergic dysfunction such as Alzheimer's disease, by both promoting the release of ACh and inhibiting its breakdown.  相似文献   

2.
3.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

4.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

5.
6.
InCulex pipiens mosquitoes, AChE1 encoded by the locusAce.1 is the target of organophosphorus and carbamate insecticides. In several resistant strains homozygous forAce.1 RR , insensitive AChE1 is exclusively found. An unusual situation occurs in two Caribbean resistant strains where each mosquito, at each generation, displays a mixture of sensitive and insensitive AChE1. These mosquitoes are not heterozygotes,Ace.1 RS , as preimaginal mortalities cannot account for the lethality of both homozygous classes. This situation is best explained by the existence of twoAce.1 loci, coding, respectively, a sensitive and an insensitive AChE1. Thus, we suggest that in the Caribbean a duplication of theAce.1 locus occurred before the appearance of insecticide resistance at one of the two copies.  相似文献   

7.
Increased sympathetic nervous system (SNS) activity plays a role in the genesis of hypertension in rats with chronic renal failure (CRF). The rise in central SNS activity is mitigated by increased local expression of neuronal nitric oxide synthase (NOS) mRNA and NO(2)/NO(3) production. Because interleukin (IL)-1beta may activate nitric oxide in the brain, we have tested the hypothesis that IL-1beta may modulate the activity of the SNS via regulation of the local expression of neuronal NOS (nNOS) in the brain of CRF and control rats. To this end, we first found that administration of IL-1beta in the lateral ventricle of control and CRF rats decreased blood pressure and norepinephrine (NE) secretion from the posterior hypothalamus (PH) and increased NOS mRNA expression. Second, we observed that an acute or chronic injection of an IL-1beta-specific antibody in the lateral ventricle raised blood pressure and NE secretion from the PH and decreased NOS mRNA abundance in the PH of control and CRF rats. Finally, we measured the IL-1beta mRNA abundance in the PH, locus coeruleus, and paraventricular nuclei of CRF and control rats by RT-PCR and found it to be greater in CRF rats than in control rats. In conclusion, these studies have shown that IL-1beta modulates the activity of the SNS in the central nervous system and that this modulation is mediated by increased local expression of nNOS mRNA.  相似文献   

8.
Interleukin-1 (IL-1) is a potent hypothalamic-pituitary-adrenal (H-P-A) axis activator. The hypothalamus is considered one of the main sites of action of IL-1 on the H-P-A axis, inducing CRF secretion, which is modulated by glucocorticoids. Glucocorticoids, which modulate CRF release by a negative feedback inhibition, have been postulated to exert a permissive action on the IL-1 effect on CRF secretion. Using a continuous perifusion system of rat hypothalami, the results of the present study indicate that at the same concentrations, IL-1 beta exerted a more potent effect than IL-1 alpha stimulating CRF secretion. The increase in hypothalamic CRF release induced by IL-1 was rapidly inhibited by both dexamethasone and corticosterone. However, adrenalectomy 2 or 8 days before did not modify CRF secretion induced by IL-1 from the in vitro perifused hypothalami. These data indicate that IL-1 does not seem to induce CRF secretion by interfering with an impeding action of glucocorticoids, although the cytokine effect is negatively modulated by corticosteroids.  相似文献   

9.
Summary 1. Innervation of the mammalian pineal gland is mainly sympathetic. Pineal synthesis of melatonin and its levels in the circulation are thought to be under strict adrenergic control of serotoninN-acetyltransferase (NAT). In addition, several putative pineal neurotransmitters modulate melatonin synthesis and secretion.2. In this review, we summarize what is currently known on the pineal cholinergic system. Cholinergic signaling in the rat pineal gland is suggested based on the localization of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), as well as muscarinic and nicotinic ACh binding sites in the gland.3. A functional role of ACh may be regulation of pineal synaptic ribbon numbers and modulation of melatonin secretion, events possibly mediated by phosphoinositide (PI) hydrolysis and activation of protein kinase C via muscarinic ACh receptors (mAChRs).4. We also present previously unpublished data obtained using primary cultures of rat pinealocytes in an attempt to get more direct information on the effects of cholinergic stimulus on pinealocyte melatonin secretion. These studies revealed that the cholinergic effects on melatonin release are restricted mainly to intact pineal glands since they were not readily detected in primary pinealocyte cultures.  相似文献   

10.
Acetylcholinesterase (AChE) and AChE mRNA were evaluated in spontaneously fibrillating myotubes derived from 20-day-old rat fetuses and in matched cultures in which fibrillation was prevented by adding tetrodotoxin on the fourth day of culture. On the eighth day of culture, the AChE activity of fibrillating and nonfibrillating cultures was 5332 and 1861 pmol ACh hydrolyzed min-1 dish-1, respectively (P less than 0.005). Total mRNA was essentially the same in fibrillating and nonfibrillating cultures (27.4 and 25.4 micrograms/dish, respectively). AChE mRNA was assessed by assaying the AChE produced by Xenopus oocytes microinjected with purified mRNA. The AChE produced by mRNA from fibrillating and nonfibrillating cultures was 0.46 and 0.10 pmol ACh hydrolyzed min-1 oocyte-1, respectively (P less than 0.005).  相似文献   

11.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Colocalization of substance P (SP), corticotropin releasing factor (CRF), and acetylcholinesterase (AChE) was detected by retrograde tracing and immunocytochemical staining in the nucleus tegmentalis dorsalis lateralis (ntdl) projecting to the medial frontal cortex (MFC), septum, and thalamus of the rat. The histochemical results suggest that SP and CRF coexist within a subpopulation of ntdl cholinergic neurons that project to a number of forebrain regions including the MFC. Behavioral studies of the effects of SP, CRF, and the cholinergic agonist, carbachol, employed microinjections into the MFC of rats. SP and CRF did not elicit any behavioral effects when administered alone. Carbachol (1–5 μg/side) produced a stereotyped motor behavior, consisting of rapid forepaw treading while in an upright posture, resembling “boxing.” SP (1 μg/side) increased carbachol-induced “boxing.” CRF (1–10 ng/side) decreased carbachol-induced “boxing.” One possible functional significance of the coexistence of SP, CRF, and acetylcholinesterase, in neurons projecting to the medial frontal cortex in rats, appears to be a modulatory potentiation of cholinergic response by SP, and a modulatory inhibition of the cholinergic response by CRF.  相似文献   

13.
Amyloid-beta accumulation in brains of Alzheimer's disease (AD) victims is accompanied by glial inflammatory reactions and preferential loss of cholinergic neurons. Therefore, the aim of this study was to find out whether proinflamatory cytokine interleukin 1beta (IL1beta) modifies effects of amyloid-beta (Abeta) on viability and cholinergic phenotype of septum derived T17 cholinergic neuroblastoma cells. In nondifferentiated T17 cells (NC) Abeta(25-35) (1 microg/ml) caused no changes in choline acetyltransferase (ChAT) activity, acetylcholine (ACh) release, subcellular distribution of acetyl-CoA, but doubled content of trypan blue positive cells. IL1beta (10 ng/ml) increased ACh release (125%) but did not change other parameters of NC. In the presence of Abeta IL1beta also increased ChAT activity (47%), ACh release (100%) but had no effect on acetyl-CoA distribution and cell viability. Differentiation with retinoic acid and dibutyryl cyclic AMP caused over two-fold increase of ChAT activity and ACh content, four-fold increase of ACh release and about 50% decrease of acetyl-CoA level in the mitochondria. In differentiated cells (DC), Abeta decreased ChAT activity (31%), ACh release (47%) and content of acetyl-CoA (80%) in cell cytoplasmic compartment, whereas IL1beta elevated ChAT activity (54%) and ACh release (32%). IL1beta totally reversed Abeta-evoked inhibition of ChAT activity and ACh release and restored control level of cytoplasmic acetyl-CoA but increased fraction of nonviable cells to 25%. Thus, IL1beta could compensate Abeta-evoked cholinergic deficits through the restoration of adequate expression of ChAT and provision of acetyl-CoA to cytoplasmic compartment in cholinergic neurons that survive under such pathologic conditions. These data indicate that IL1beta possess independent cholinotrophic and cholinotoxic activities that may modify Abeta effects on cholinergic neurons.  相似文献   

14.
杀虫药剂的神经毒理学研究进展   总被引:23,自引:1,他引:23  
伍一军  冷欣夫 《昆虫学报》2003,46(3):382-389
大多数杀虫药剂都具有较强的神经毒性,它们对神经系统的作用靶标不同。有机磷类杀虫剂不仅抑制乙酰胆碱酯酶活性和乙酰胆碱受体功能,影响乙酰胆碱的释放,而且还具有非胆碱能毒性,有些有机磷杀虫剂还能引发迟发性神经毒性。新烟碱类杀虫剂作为烟碱型乙酰胆碱受体(nAChR)的激动剂,作用于该类受体的α亚基;它对昆虫的毒性比对哺乳动物的毒性大得多,乃是因为它对昆虫和哺乳动物nAChR的作用位点不同。拟除虫菊酯类杀虫剂主要作用于神经细胞钠通道,引起持续开放,导致传导阻滞;该类杀虫剂也可抑制钙通道。另外,这类杀虫剂还干扰谷氨酸递质和多巴胺神经元递质的释放。拟除虫菊酯类杀虫剂对昆虫的选择毒性很可能是因为昆虫神经元的钠通道结构与哺乳动物的不同。阿维菌素类杀虫剂主要作用于γ-氨基丁酸(GABA)受体,它能促进GABA的释放,增强GABA与GABA受体的结合,使氯离子内流增加,导致突触后膜超级化。由于这类杀虫剂难以穿透脊椎动物的血脑屏障而与中枢神经系统的GABA受体结合,故该类杀虫剂对脊椎动物的毒性远低于对昆虫的毒性。多杀菌素类杀虫剂可与中枢神经系统的nAChR作用,引起Ach长时间释放,此外,这类杀虫剂还可作用于昆虫的GABA受体,改变GABA门控氯通道的功能。  相似文献   

15.
16.
Corticotropin-releasing factor (CRF) and the urocortins (UCNs) are structurally and pharmacologically related neuropeptides which regulate the endocrine, autonomic, emotional and behavioral responses to stress. CRF and UCN1 activate both CRF receptors (CRFR1 and CRFR2) with CRF binding preferentially to CRFR1 and UCN1 binding equipotently to both receptors. UCN2 and UCN3 activate selectively CRFR2. Previously an in vitro study demonstrated that superfusion of both CRF and UCN1 elevated the GABA release elicited by electrical stimulation from rat amygdala, through activation of CRF1 receptors. In the present experiments, the same in vitro settings were used to study the actions of CRF and the urocortins on hypothalamic GABA release. CRF and UCN1 administered in equimolar doses increased significantly the GABA release induced by electrical stimulation from rat hypothalamus. The increasing effects of CRF and UCN1 were inhibited considerably by the selective CRFR1 antagonist antalarmin, but were not influenced by the selective CRFR2 antagonist astressin 2B. UCN2 and UCN3 were ineffective. We conclude that CRF1 receptor agonists induce the release of GABA in the hypothalamus as well as previously the amygdala. We speculate that CRF-induced GABA release may act as a double-edged sword: amygdalar GABA may disinhibit the hypothalamic CRF release, leading to activation of the hypothalamic-pituitary-adrenal axis, whereas hypothalamic GABA may inhibit the hypothalamic CRF release, terminating this activation.  相似文献   

17.
The effects of neurotensin (NT) alone or in combination with the dopamine antagonist sulpiride were tested on the release of endogenous acetylcholine (ACh) from striatal slices. NT enhanced potassium (25 mM)-evoked ACh release from striatal slices in a dose-dependent manner. This effect was tetrodotoxin-insensitive, suggesting an action directly on cholinergic elements. The dopamine antagonist sulpiride (5 x 10(-5) M) significantly increased (63%) potassium-evoked ACh release from striatal slices; potassium-evoked ACh release was further increased (90%) in the presence of NT (10(-5) M) and sulpiride (5 x 10(-5) M). The second set of experiments tested the effects of 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra on NT-induced increases of potassium-evoked ACh release. These lesions did not alter the NT regulation of potassium-evoked ACh release from striatal slices, but did significantly increase spontaneous (33%) and potassium-evoked (40%) ACh release from striatal slices. Striatal choline acetyltransferase activity was not affected by 6-OHDA lesions. In addition, following 6-OHDA lesions, sulpiride was ineffective in altering ACh release from striatal slices. Furthermore, evoked ACh release in the presence of the combination of NT and sulpiride was not different from that in the presence of NT alone. These results suggest that in the rat striatum, NT regulates cholinergic interneuron activity by interacting with NT receptors associated with cholinergic elements. Moreover, the NT modulation of cholinergic activity is independent of either an interaction of NT with D2 dopamine receptors or the sustained release of dopamine.  相似文献   

18.
The cholinergic inputs to the rat hippocampus were lesioned by intraseptal injections of 192 IgG-saporin. After 15 days, fetal septal cells were grafted into the hippocampus. Thirteen months later, hippocampal acetylcholine (ACh) release was studied by microdialysis. Lesioning reduced basal ACh release (100%) to 20% of normal, which was compensated for by the graft (71%). Infusion of the serotonin uptake inhibitor citalopram (100 M) enhanced ACh release to the same extent (% of basal release) in all rat groups. Systemic injection of 8-OH-DPAT (0.5 mg/kg, SC), an agonist of 5-HT1A receptors, caused a smaller ACh release than citalopram. Acetylcholinesterase (AChE) staining and densitometric quantification revealed that the lesion-induced reduction of the AChE-staining density was compensated for by septal grafting. In conclusion, both histochemical and biochemical methods showed that cholinergic hippocampal parameters were drastically impaired by 192 IgG-saporin lesions, but were almost completely restored by septal grafting. The graft responded to intrinsic serotonergic regulation.  相似文献   

19.
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号