首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Pai  I L Szabo  A Q Giap  H Kawanaka  A S Tarnawski 《Life sciences》2001,69(25-26):3055-3071
Re-epithelialization is essential for gastrointestinal ulcer and cutaneous wound healing. It requires epithelial cell migration and proliferation, processes that are stimulated by epidermal growth factor (EGF), and dependent on the cell cytoskeleton. Activation of Src and focal adhesion kinase (FAK) has been implicated in EGF-stimulated cell migration. Nonsteroidal anti-inflammatory drugs (NSAIDs) (both nonselective and Cox2-selective) interfere with ulcer healing and re-epithelialization in vitro and in vivo, but the cellular targets and mechanisms remain unexplored forming the basis of this study. Using a wounded gastric epithelial cell monolayer model, we demonstrated that NSAIDs reduce both basal and epidermal growth factor (EGF)-induced re-epithelialization, and that this action involves disruption of actin stress fiber formation, reduced c-Src activity, decreased phosphorylation of focal adhesion kinase (FAK), tensin and their cellular re-distribution. There was a strong correlation between NSAIDs-mediated inhibitory effect on re-epithelialization and loss of stress fibers and reduced tensin signal. Furthermore, NSAIDs significantly reduced EGF-stimulated c-Src association with FAK. These findings suggest that NSAIDs can directly affect the cell cytoskeleton and signaling pathways essential for re-epithelialization.  相似文献   

2.
Tyrosine phosphorylation of cytoskeletal proteins occurs during integrin-mediated cell adhesion to extracellular matrix proteins. We have investigated the role of tyrosine phosphorylation in the migration and initial spreading of human umbilical vein endothelial cells (HUVEC). Elevated phosphotyrosine concentrations were noted in the focal adhesions of HUVEC migrating into wounds. Anti-phosphotyrosine Western blots of extracts of wounded HUVEC monolayers demonstrated increased phosphorylation at 120-130 kDa when compared with extracts of intact monolayers. The pp125FAK immunoprecipitated from wounded monolayers exhibited increased kinase activity as compared to pp125FAK from intact monolayers. The time to wound closure in HUVEC monolayers was doubled by tyrphostin AG 213 treatment. The same concentration of AG 213 interfered with HUVEC focal adhesion and stress fiber formation. AG 213 inhibited adhesion-associated tyrosine phosphorylation of pp125FAK in HUVEC. Tyrphostins AG 213 and AG 808 inhibited pp125FAK activity in in vitro kinase assays. pp125FAK immunoprecipitates from HUVEC treated with both of these inhibitors also had kinase activity in vitro that was below levels seen in untreated HUVEC. These findings suggest that tyrosine phosphorylation of cytoskeletal proteins may be important in HUVEC spreading and migration and that pp125FAK may mediate phosphotyrosine formation during these processes.  相似文献   

3.
Restitution is a crucial event during the healing of superficial injury of the gastric mucosa involving epithelial cell sheet movement into the damaged area. We demonstrated that growth factors promote the restitution of human gastric epithelial cells. However, the intracellular signaling pathways that transmit extracellular cues as well as regulate basal and growth factor-stimulated gastric epithelial cell migration are still unclear. Herein, confluent human gastric epithelial cell monolayers (HGE-17) or primary cultures of gastric epithelial cells were wounded with a razor blade and the migration response was analyzed in presence or absence of TGFalpha or of pharmacological inhibitors of signaling proteins. Kinase activation profile analysis and phase-contrast microscopy were also performed in parallel. We report that ERK1/2 and Akt activities are rapidly stimulated following wounding of HGE-17 cells. Treatment of confluent HGE-17 cells or primary cultures of gastric epithelial cells with the phosphatidylinositol 3-kinase inhibitor LY294002, but not the MEK1 inhibitor, PD98059, significantly inhibits basal and TGFalpha-induced migration following wounding. Conversely, treatment of wounded HGE-17 cells with phosphatidylinositol(3,4,5)-triphosphate is sufficient to stimulate basal cell migration by 235%. In addition, pp60c-src kinase activity and tyrosine phosphorylation of epidermal growth factor receptors (EGFR) are also rapidly enhanced after wounding and pharmacological inhibition of both these activities strongly attenuates basal and TGFalpha-induced migration as well as Akt phosphorylation levels. In conclusion, the present results indicate that EGFR-dependent PI3K activation promotes restitution of wounded human gastric epithelial monolayers.  相似文献   

4.
Polyamines are essential to the migration ofepithelial cells in the intestinal mucosa. Cells depleted of polyaminesdo not attach as rapidly to the extracellular matrix and do not form the actin stress fibers essential for migration. Because both attachment and stress fiber formation depend on integrin signaling andthe formation of focal adhesions, we examined these and related processes in polyamine-depleted IEC-6 cells. There was general decreased tyrosine phosphorylation of focal adhesion kinase (FAK), and,specifically, decreased phosphorylation of Tyr-925, the paxillin binding site. In control cells, FAK phosphorylation was rapid afterattachment to the extracellular matrix, while attached cells depletedof polyamines had significantly delayed phosphorylation. FAK activitywas also significantly inhibited in polyamine-depleted cells as was thephosphorylation of paxillin. Polyamine-depleted cells failed to spreadnormally after attachment, and immunocytochemistry showed littlecolocalization of FAK and actin compared with controls. Focal adhesioncomplex formation was greatly reduced in the absence of polyamines.These data suggest that defective integrin signaling may, at least inpart, account for the decreased rates of attachment, actin stress fiberformation, spreading, and migration observed in polyamine-depleted cells.

  相似文献   

5.
Epidermal Growth Factor (EGF) is an important regulator of normal epithelial and carcinoma cell migration. The mechanism by which EGF induces cell migration is not fully understood. A recent report in Nature Cell Biology (Katz et al., 2007) demonstrates that EGF regulates migration through a switch in the expression of two tensin isoforms, weakening the association of beta1 integrin with the actin cytoskeleton in focal adhesions.  相似文献   

6.
In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.  相似文献   

7.
Tyrosine phosphorylation of cytoskeletal proteins plays an important role in the regulation of focal adhesions and stress fiber organization. In the present study we examined the role of tyrosine phosphatases in this process using p125FAK and paxillin as substrates. We show that tyrosine phosphatase activity in Swiss 3T3 cells was markedly increased when actin stress fibers were disassembled by cell detachment from the substratum, by serum starvation, or by cytochalasin D treatment. This activity was blocked by phenylarsine oxide, an inhibitor of a specific class of tyrosine phosphatases characterized by two vicinal thiol groups in the active site. Phenylarsine oxide treatment of serum-starved cells induced increased tyrosine phosphorylation of p125FAK and paxillin in a dose-dependent manner and induced assembly of focal adhesions and actin stress fibers, showing that inhibition of one or more phenylarsine oxide-sensitive tyrosine phosphatases is a sufficient stimulus for triggering focal adhesion and actin stress fiber formation in adherent cells.  相似文献   

8.
Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.  相似文献   

9.
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.  相似文献   

10.
Oxidants, generated by activated neutrophils, have been implicated in the pathophysiology of vascular disorders and lung injury; however, mechanisms of oxidant-mediated endothelial barrier dysfunction are unclear. Here, we have investigated the role of focal adhesion kinase (FAK) in regulating hydrogen peroxide (H(2)O(2))-mediated tyrosine phosphorylation of intercellular adhesion proteins and barrier function in endothelium. Treatment of bovine pulmonary artery endothelial cells (BPAECs) with H(2)O(2) increased tyrosine phosphorylation of FAK, paxillin, beta-catenin, and vascular endothelial (VE)-cadherin and decreased transendothelial electrical resistance (TER), an index of cell-cell adhesion and/or cell-matrix adhesion. To study the role of FAK in H(2)O(2)-induced TER changes, BPAECs were transfected with vector or FAK wild-type or FAK-related non-kinase (FRNK) plasmids. Overexpression of FRNK reduced FAK expression and attenuated H(2)O(2)-mediated tyrosine phosphorylation of FAK, paxillin, beta-catenin, and VE-cadherin and cell-cell adhesion. Additionally, FRNK prevented H(2)O(2)-induced distribution of FAK, paxillin, beta-catenin, or VE-cadherin toward focal adhesions and cell-cell adhesions but not actin stress fiber formation. These results suggest that activation of FAK by H(2)O(2) is an important event in oxidant-mediated VE barrier function regulated by cell-cell and cell-matrix contacts.  相似文献   

11.
Diseases of gut inflammation such as neonatal necrotizing enterocolitis (NEC) result after an injury to the mucosal lining of the intestine, leading to translocation of bacteria and endotoxin (lipopolysaccharide). Intestinal mucosal defects are repaired by the process of intestinal restitution, during which enterocytes migrate from healthy areas to sites of injury. In an animal model of NEC, we determined that intestinal restitution was significantly impaired compared with control animals. We therefore sought to determine the mechanisms governing enterocyte migration under basal conditions and after an endotoxin challenge. Here we show that the cytoskeletal reorganization and stress fiber formation required for migration in IEC-6 enterocytes requires RhoA. Enterocytes were found to express the endotoxin receptor Toll-like receptor 4, which served to bind and internalize lipopolysaccharide. Strikingly, endotoxin treatment significantly inhibited intestinal restitution, as measured by impaired IEC-6 cell migration across a scraped wound. Lipopolysaccharide was found to increase RhoA activity in a phosphatidylinositol 3-kinase-dependent manner, leading to an increase in phosphorylation of focal adhesion kinase and an enhanced number of focal adhesions. Importantly, endotoxin caused a progressive, RhoA-dependent increase in cell matrix tension/contractility, which correlated with the observed impairment in enterocyte migration. We therefore conclude that endotoxin inhibits enterocyte migration through a RhoA-dependent increase in focal adhesions and enhanced cell adhesiveness, which may participate in the impaired restitution observed in experimental NEC.  相似文献   

12.
In response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 integrins. FAK is also dispensible for proliferation/survival in enriched medium. In contrast, FAK functions downstream of alphabeta1 integrin in regulating cytoskeletal dynamics and orchestrating polarized keratinocyte migration out of epidermal explants. Fak-null keratinocytes display an aberrant actin cytoskeleton, which is tightly associated with robust, peripheral focal adhesions and microtubules. We find that without FAK, Src, p190RhoGAP, and PKL-PIX-PAK, localization and/or activation at focal adhesions are impaired, leading to elevated Rho activity, phosphorylation of myosin light chain kinase, and enhanced tensile stress fibers. We show that, together, these FAK-dependent activities are critical to control the turnover of focal adhesions, which is perturbed in the absence of FAK.  相似文献   

13.
The initial signalling events leading to Helicobacter pylori infection associated changes in motility, cytoskeletal reorganization and elongation of gastric epithelial cells remain poorly understood. Because focal adhesion kinase (FAK) is known to play important roles in regulating actin cytoskeletal organization and cell motility we examined the effect of H. pylori in gastric epithelial cells co-cultured with H. pylori or its isogenic cag pathogenicity island (PAI) or oipA mutants. H. pylori induced FAK phosphorylation at distinct tyrosine residues in a dose- and time-dependent manner. Autophosphorylation of FAK Y397 was followed by phosphorylation of Src Y418 and resulted in phosphorylation of the five remaining FAK tyrosine sites. Phosphorylated FAK and Src activated Erk and induced actin stress fibre formation. FAK knock-down by FAK-siRNA inhibited H. pylori- mediated Erk phosphorylation and abolished stress fibre formation. Infection with oipA mutants reduced phosphorylation of Y397, Y576, Y577, Y861 and Y925, inhibited stress fibre formation and altered cell morphology. cag PAI mutants reduced phosphorylation of only FAK Y407 and had less effect on stress fibre formation than oipA mutants. We propose that activation of FAK and Src are responsible for H. pylori -induced induction of signalling pathways resulting in the changes in cell phenotype important for pathogenesis.  相似文献   

14.
Microinjection and scrape-loading have been used to load cells in culture with soluble protein tyrosine phosphatases (FTPs). The introduction of protein tyrosine phosphatases into cells caused a rapid (within 5 minutes) decrease in tyrosine phosphorylation of major tyrosine phosphorylated substrates, including the focal adhesion kinase and paxillin. This decrease was detected both by blotting whole cell lysates with anti-phosphotyrosine antibodies and visualizing the phosphotyrosine in focal adhesions by immunofluorescence microscopy. After 30 minutes, many of the cells injected with tyrosine phosphatases revealed disruption of focal adhesions and stress fibers. To determine whether this disruption was due to the dephosphorylation of FAK and its substrates in focal adhesions, we have compared the effects of protein tyrosine phosphatase microinjection with the effects of displacing FAK from focal adhesions by microinjection of a dominant negative FAK construct. Although both procedures resulted in a marked decrease in the level of phosphotyrosine in focal adhesions, disruption of focal adhesions and stress fibers only occurred in cells loaded with exogenous protein tyrosine phosphatases. These results lead us to conclude that although tyrosine phosphorylation regulates focal adhesion and stress fiber stability, this does not involve FAK nor does it appear to involve tyrosine-phosphorylated proteins within focal adhesions. The critical tyrosine phosphorylation event is upstream of focal adhesions, a likely target being in the Rho pathway that regulates the formation of stress fibers and focal adhesions.  相似文献   

15.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

16.
Impairment of epithelial barrier is observed in various intestinal disorders including inflammatory bowel diseases (IBD). Numerous factors may cause temporary damage of the intestinal epithelium. A complex network of highly divergent factors regulates healing of the epithelium to prevent inflammatory response. However, the exact repair mechanisms involved in maintaining homeostatic intestinal barrier integrity remain to be clarified.In this study, we demonstrate that activation of M1 muscarinic acetylcholine receptor (mAChR) augments the restitution of epithelial barrier function in T84 cell monolayers after ethanol-induced epithelial injury, via ERK-dependent phosphorylation of focal adhesion kinase (FAK). We have shown that ethanol injury decreased the transepithelial electrical resistance (TER) along with the reduction of ERK and FAK phosphorylation. Carbachol (CCh) increased ERK and FAK phosphorylation with enhanced TER recovery, which was completely blocked by either MT-7 (M1 antagonist) or atropine. The CCh-induced enhancement of TER recovery was also blocked by either U0126 (ERK pathway inhibitor) or PF-228 (FAK inhibitor). Treatment of T84 cell monolayers with interferon-γ (IFN-γ) impaired the barrier function with the reduction of FAK phosphorylation. The CCh-induced ERK and FAK phosphorylation were also attenuated by the IFN-γ treatment. Immunological and binding experiments exhibited a significant reduction of M1 mAChR after IFN-γ treatment. The reduction of M1 mAChR in inflammatory area was also observed in surgical specimens from IBD patients, using immunohistochemical analysis. These findings provide important clues regarding mechanisms by which M1 mAChR participates in the maintenance of intestinal barrier function under not only physiological but also pathological conditions.  相似文献   

17.
Here, we report the identification of a new tensin family member, tensin3, and its role in epidermal growth factor (EGF) signaling pathway. Human tensin3 cDNA encodes a 1445 amino acid sequence that shares extensive homology with tensin1, tensin2, and COOH-terminal tensin-like protein. Tensin3 is expressed in various tissues and in different cell types such as endothelia, epithelia, and fibroblasts. The potential role of tensin3 in EGF-induced signaling pathway is explored. EGF induces tyrosine phosphorylation of tensin3 in MDA-MB-468 cells in a time- and dose-dependent manner, but it is independent of an intact actin cytoskeleton or phosphatidylinositol 3-kinase. Activation of EGF receptor is necessary but not sufficient for tyrosine phosphorylation of tensin3. It also requires Src family kinase activities. Furthermore, tensin3 forms a complex with focal adhesion kinase and p130Cas in MDA-MB-468 cells. Addition of EGF to the cells induces dephosphorylation of these two molecules, leads to disassociation of the tensin3-focal adhesion kinase-p130Cas complex, and enhances the interaction between tensin3 and EGF receptor. Our results demonstrate that tensin3 may function as a platform for the disassembly of EGF-related signaling complexes at focal adhesions.  相似文献   

18.
In the gastrointestinal mucosa, cell migration plays a crucial role in the organization and maintenance of tissue integrity but the mechanisms involved remain incompletely understood. Here, we used small-interfering RNA (siRNA)-mediated depletion of focal adhesion kinase (FAK) protein to determine the role of FAK in wound-induced migration and cytoskeletal organization in the non-transformed intestinal epithelial cells IEC-6 and IEC-18 stimulated with the G protein-coupled receptors (GPCR) agonist lysophosphatidic acid (LPA). Treatment of these cells with FAK siRNA substantially reduced FAK expression, but did not affect the expression of proline-rich tyrosine kinase 2 (Pyk2). Knockdown of FAK protein significantly inhibited LPA-induced migration of both IEC-18 and IEC-6 cells. LPA induced reorganization of actin and microtubule cytoskeleton in the leading edge was largely inhibited in FAK siRNA-transfected IEC-18 cells. Interestingly, in contrast to the FAK-/- cells, which exhibit an increased number of prominent focal adhesions when plated on fibronectin, FAK knockdown IEC-18 cells exhibited dramatically decreased number of focal adhesions in response to both LPA and fibronectin as compared with the control cells. We also used siRNAs to knockdown Pyk2 expression without reducing FAK expression. Depletion of Pyk2 did not prevent LPA-induced migration or cytoskeletal reorganization in IEC-18 cells. In conclusion, our study shows that FAK plays a critical role in LPA-induced migration, cytoskeletal reorganization, and assembly of focal adhesions in intestinal epithelial cells whereas depletion of Pyk2 did not interfere with any of these responses elicited by LPA.  相似文献   

19.
Tensin   总被引:1,自引:0,他引:1  
Tensin is a cytoplasmic phosphoprotein that localized to integrin-mediated focal adhesions. It binds to actin filaments and contains a phosphotyrosine-binding (PTB) domain, which interacts with the cytoplasmic tails of beta integrin. These interactions allow tensin to link actin filaments to integrin receptors. In addition, tensin has an Src Homology 2 (SH2) domain capable of interacting with tyrosine-phosphorylated proteins. Furthermore, several factors induce tyrosine phosphorylation of tensin. Thus, tensin functions as a platform for dis/assembly of signaling complexes at focal adhesions by recruiting tyrosine-phosphorylated signaling molecules through the SH2 domain, and also by providing interaction sites for other SH2-containing proteins. Analysis of knockout mice has demonstrated critical roles of tensin in renal function, muscle regeneration, and cell migration. Therefore, tensin and its downstream signaling molecules may be targets for therapeutic interventions in renal disease, wound healing and cancer.  相似文献   

20.
The role of hsp27 as an inhibitor of actin polymerization was considered in the context of the actin cytoskeleton and its relationship with focal adhesion formation. The aim of this study was to evaluate the potential effects of hsp27 on focal adhesion formation as a relevant biological consequence of actin stress fiber formation. When hsp27 was overexpressed in stably transfected cells, cell attachment was delayed and recovery of disrupted stress fibers and focal adhesions was limited. In ROS 17/2.8 cells, heat shock caused the reversible disruption of stress fibers and focal adhesions. The loss of stress fibers and focal adhesions was associated with reduced phosphotyrosine on the focal adhesion kinase (FAK). Microinjection of recombinant 6-His hsp27 and phosphorylated 6-His hsp27 was used to demonstrate that nonphosphorylated hsp27 prevented the recovery of stress fibers and focal adhesions. These results provide in vivo evidence that hsp27 acts as an inhibitor of actin polymerization that can alter cellular interactions with extracellular environments by perturbation of stress fibers, and subsequently focal adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号