共查询到20条相似文献,搜索用时 0 毫秒
1.
Dave KR Christian SL Perez-Pinzon MA Drew KL 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2012,162(1-3):1-9
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease. 相似文献
2.
Viruses are the most abundant living entities and probably had a major role in the evolution of life, but are still defined using negative criteria. Here, we propose to divide biological entities into two groups of organisms: ribosome-encoding organisms, which include eukaryotic, archaeal and bacterial organisms, and capsid-encoding organisms, which include viruses. Other replicons (for example, plasmids and viroids) can be termed 'orphan replicons'. Based on this suggested classification system, we propose a new definition for a virus--a capsid-encoding organism that is composed of proteins and nucleic acids, self-assembles in a nucleocapsid and uses a ribosome-encoding organism for the completion of its life cycle. 相似文献
3.
4.
Zakian VA 《Trends in cell biology》1996,6(1):29-33
Telomeres are specialized DNA protein structures that form the ends of eukaryotic chromosomes. In yeast, loss of even a single telomere causes a prolonged, but transitory, cell-cycle arrest. During this arrest, many broken chromosomes acquire a new telomere by one of three pathways, although at the cost of a partial loss of heterozygosity. In addition, a substantial fraction of the chromosomes lacking a telomere is lost, which generates an aneuploid cell. In these cases, the broken chromosome is usually replicated and segregated for ten or more cell divisions in unstable form. Extrapolation from yeast suggests that the gradual loss of telomeric DNA that accompanies ageing in humans may initiate the kinds of chromosomal rearrangements and genetic changes that are associated with tumorigenesis. 相似文献
5.
Functional genomics: lessons from yeast 总被引:5,自引:0,他引:5
Oliver SG 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1417):17-23
6.
7.
Microtubules and neuronal polarity: lessons from mitosis 总被引:8,自引:0,他引:8
8.
Osteoarthritis (OA) is an age-related degenerative disease comprising the main reason of handicap in the Western world. Interestingly, to date, there are neither available biomarkers for early diagnosis of the disease nor any effective therapy other than symptomatic treatment and joint replacement surgery. OA has long been associated with obesity, mainly due to mechanical overload exerted on the joints. Recent studies however, point to the direction that OA is a metabolic disease, as it also involves non-weight bearing joints. In fact, altered lipid metabolism may be the underlying cause. First, adipokines have been shown to be key regulators of OA pathogenesis. Second, epidemiological studies have shown serum cholesterol to be a risk factor for OA development. Third, lipid deposition in the joint is observed at the early stages of OA before the occurrence of histological changes. Fourth, proteomic analyses have shown an important connection between OA and lipid metabolism. Finally, recent gene expression studies reveal a deregulation of cholesterol influx and efflux and in the expression of lipid metabolism-related genes. Interestingly, lipids and lipid metabolism are known to be implicated in the development and progression of another age-related degenerative disease, atherosclerosis (ATH). Thus, although it is tempting to speculate that the osteoarthritic chondrocyte has been transformed to foam cell, it has not been proven yet. However, this may be an intriguing theory linking ATH and OA, which may open new avenues to novel therapeutic interventions for OA taking advantage of previous knowledge from ATH. 相似文献
9.
Congenital neutropenia are extremely rare diseases, defined by a permanent or cyclic decrease of blood neutrophils. Molecular basis of several congenital neutropenia has been recently determined, involving gene coding for the neutrophil elastase gene (ELA2), GFI1, WAS protein and mitochondrial HAX1 protein. These mutations, dominant (ELA2, GFI1), X-linked (WAS) and autosomal recessive (HAX1), result in instability of the contents of the granules- particularly the neutrophil elastase- or in abnormalities of the cytoskeleton, and possibly, in an increased apoptosis. ELA2 mutations resulting both in profound and permanent neutropenia, and in cyclic--pseudo sinusoidal--neutropenia lead to consider that time pattern is very close in the two apparently distinct phenotypes. This observation suggests that temporal variations of neutrophils could be represented by non linear functions. Congenital neutropenia, specifically ELA2 mutated, are also characterized by a high rate of leukemia (about 15% at 20 years of age). Leukemia risk does not appear to be related to an oncogenic effect of ELA2 mutations, but much likely to the deepness of the neutropenia, and the intensity of G-CSF therapy. 相似文献
10.
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells. 相似文献
11.
Nuclear transplantation: lessons from frogs and mice 总被引:12,自引:0,他引:12
Nuclear transplantation was developed 50 years ago in frogs to test whether nuclei from differentiated cells remain genetically equivalent to zygotic nuclei. Results from cloning experiments in frogs and mice indicate that nuclei gradually lose potency during development from embryonic to adult cells. However, even though adult mature lymphocytes were recently shown to remain genetically totipotent, no evidence exists to show that surviving clones originate from the nuclei of terminally differentiated cells. Thus, it is equally possible that many cloned animals are in fact derived from the nuclei of less differentiated adult cells such as adult stem cells. These cells might be more easily reprogrammed than terminally differentiated cells and may support development of a clone at a higher efficiency. Importantly, irrespective of the donor cell, clones display common abnormalities such as foetal and placental overgrowth. Indeed, gene expression analyses and extensive phenotypic characterisation of cloned animals suggest that most, if not all, clones suffer from at least subtle abnormalities. 相似文献
12.
Protein--carbohydrate interactions are at the heart of many important biological processes including signalling, recognition and catalysis. A deeper understanding of these interactions at the molecular level will enable the development of novel, effective and highly selective therapeutics. Glycosyltransferases and glycosidases, carbohydrate-processing enzymes responsible for the synthesis and breakdown of oligosaccharides, have emerged as important targets in the fight against bacterial and fungal pathogenesis, cancer and AIDS. Binding and recognition phenomena are essential processes by which the body exerts control over complex biological functions. In this regard, heparin has retained ongoing interest reflecting its importance as a major pharmaceutical. Recent studies on heparin have shed light onto the mechanisms of cross-reactivity that cause life-threatening side effects and have provided impetus for the development of more selective anti-clotting agents. Important targets for therapeutic intervention are the binding processes mediated through multivalent protein--carbohydrate interactions, such as the interactions of bacterial toxins with cell-surface receptors. 相似文献
13.
Scadden DT 《Cell Stem Cell》2012,10(6):648-649
Stroma is a largely understudied component of all organs that contributes to stem cell niches. Studies to define stromal components in the bone marrow have led to some unexpected findings that prompt further research. 相似文献
14.
15.
Bulger M 《The Journal of biological chemistry》2005,280(23):21689-21692
A small but growing number of loci that exhibit covalent histone modifications, such as hyperacetylation, over broad regions of 10 kb or more have been characterized. These hyperacetylated domains occur exclusively at loci containing highly expressed, tissue-specific genes, and the available evidence suggests that they are involved in the activation of these genes. Although to date little is known concerning the formation or function of these domains, rather more is known concerning repressive, heterochromatic domains, and the example provided by heterochromatin may be instructive in considering mechanisms of active domain formation. 相似文献
16.
Helmreich RL 《BMJ (Clinical research ed.)》2000,320(7237):781-785
17.
Cancer stem cells: lessons from leukaemia 总被引:1,自引:0,他引:1
Bonnet D 《Cell proliferation》2005,38(6):357-361
Increasing evidence suggests that leukaemias are sustained by leukaemic stem cells. Leukaemia can indeed be viewed as aberrant haematopoietic processes initiated by rare leukaemic stem cells that have maintained or re-acquired the capacity for indefinite proliferation through accumulated mutations and/or epigenetic changes. Yet, despite their critical importance, much remains to be learned about the developmental origin of leukaemic stem cells and the molecular pathways underlying the transformation of normal cells into leukaemic stem cells. This report will review our current knowledge on leukaemic stem cells development and finally demonstrate how these discoveries provide a paradigm for identification of cancer stem cells from solid tumours. 相似文献
18.
Cancer stem cells: lessons from leukemia 总被引:24,自引:0,他引:24
A fundamental problem in cancer research is identification of the cell type capable of initiating and sustaining growth of the tumor--the cancer stem cell (CSC). While the existence of CSCs was first proposed over 40 years ago, only in the past decade have these cells been identified and characterized in hematological malignancies. Recent studies have now described CSCs in solid tumors of the breast and brain, raising the possibility that such cells are at the apex of all neoplastic systems. An appreciation of the biological distinctness of CSCs is crucial not only for the design of studies to understand how tumorigenic pathways operate but also for the development of specific therapies that effectively target these cells in patients. 相似文献
19.
20.
Marie-Louise Hammarskj?ld 《RNA (New York, N.Y.)》2015,21(4):632-633