首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidation of arsenite to arsenate by Alcaligenes faecalis.   总被引:4,自引:0,他引:4       下载免费PDF全文
Alcaligenes faecalis, resistant to the toxic effects of 0.01 M sodium arsenite, was isolated from raw sewage and shown to be capable of oxidizing arsenite to arsenate. When the organisms were grown in chemically defined medium, this conversion was due to the appearance at stationary phase of an intracellular, oxygen-sensitive, inducible enzyme and/or component of the electron transport system; when the organisms were grown in a nutrient broth-yeast extract medium, the enzyme appeared in the late exponential phase of growth. The presence of 0.02 M arsenite in the culture medium affected neither growth rate nor final cell yield.  相似文献   

2.
Alcaligenes faecalis, resistant to the toxic effects of 0.01 M sodium arsenite, was isolated from raw sewage and shown to be capable of oxidizing arsenite to arsenate. When the organisms were grown in chemically defined medium, this conversion was due to the appearance at stationary phase of an intracellular, oxygen-sensitive, inducible enzyme and/or component of the electron transport system; when the organisms were grown in a nutrient broth-yeast extract medium, the enzyme appeared in the late exponential phase of growth. The presence of 0.02 M arsenite in the culture medium affected neither growth rate nor final cell yield.  相似文献   

3.
微生物砷氧化是指微生物通过砷氧化酶AioAB将毒性强的亚砷酸盐[As(Ⅲ)]氧化为毒性较弱的砷酸盐[As(Ⅴ)]的过程。该过程一方面有利于微生物自身和环境的修复,另一方面能够提供能量供给部分砷氧化菌生长。介绍微生物砷氧化调控机制的最新研究进展。  相似文献   

4.
Microorganisms play a significant role in the speciation and mobility of arsenic in the environment. In this study, the oxidation of arsenite [As(III)] to arsenate [As(V)] linked to chlorate (ClO3) reduction was shown to be catalyzed by sludge samples, enrichment cultures (ECs), and pure cultures incubated under anaerobic conditions. No activity was observed in treatments lacking inoculum or with heat-killed sludge, or in controls lacking ClO3. The As(III) oxidation was linked to the complete reduction of ClO3 to Cl, and the molar ratio of As(V) formed to ClO3 consumed approached the theoretical value of 3:1 assuming the e equivalents from As(III) were used to completely reduce ClO3. In keeping with O2 as a putative intermediate of ClO3 reduction, the ECs could also oxidize As(III) to As(V) with O2 at low concentrations. Low levels of organic carbon were essential in heterotrophic ECs but not in autotrophic ECs. 16S rRNA gene clone libraries indicated that the ECs were dominated by clones of Rhodocyclaceae (including Dechloromonas, Azospira, and Azonexus phylotypes) and Stenotrophomonas under autotrophic conditions. Additional phylotypes (Alicycliphilus, Agrobacterium, and Pseudoxanthomonas) were identified in heterotrophic ECs. Two isolated autotrophic pure cultures, Dechloromonas sp. strain ECC1-pb1 and Azospira sp. strain ECC1-pb2, were able to grow by linking the oxidation of As(III) to As(V) with the reduction of ClO3. The presence of the arsenite oxidase subunit A (aroA) gene was demonstrated with PCR in the ECs and pure cultures. This study demonstrates that ClO3 is an alternative electron acceptor to support the microbial oxidation of As(III).The contamination of drinking water with arsenic (As) is a global public health issue. Arsenic is a human carcinogenic compound (2), which poses a risk to millions of people around the world (31). The most common oxidation states of As in aqueous environments are arsenite [As(III), H3AsO3] or arsenate [As(V), H2AsO4, and HAsO42−]. Microbial processes play critical roles in controlling the fate and transformation of As in subsurface systems (22). As(V) binds to aluminum oxides more extensively than As(III) under circumneutral pH conditions (12, 16). Both As(III) and As(V) are strongly adsorbed on iron oxides (9). However, As(III) is more rapidly desorbed compared to As(V) (35).Aerobic bacteria can oxidize As(III) forming As(V) (14, 28), which potentially is less mobile in the subsurface environment. Also, in environments with dissolved ferrous iron [Fe(II)] the oxidation of Fe(II) (both abiotic and biotic) would result in formation of Fe(III) (hydr)oxides such as ferrihydrite which adsorb As. Oxidation processes, therefore, can decrease the mobilization of As in groundwater. However, oxygen (O2) is poorly soluble in groundwater and may become consumed by microbial activity, creating anaerobic zones. Alternative oxidants aside from O2 also have the potential to support the microbial oxidation of As(III). Recently, several studies have demonstrated that nitrate-dependent As(III) oxidation is carried out by anaerobic microorganisms to gain energy from As(III) oxidation. As(III)-oxidizing denitrifying bacteria have been isolated from various environments including As-contaminated lakes and soil (21, 25), as well as enrichment cultures (ECs), and isolates from pristine sediments and sludge samples (33, 34). 16S rRNA gene clone library characterization of the ECs indicates that the predominant phylotypes were from the genus Azoarcus and the family Comamonadaceae (34).Beside nitrate, chlorate (ClO3) can also be considered as a possible alternative oxidant for microorganisms to promote the bioremediation of contaminated plumes (6, 17). (Per)chlorate is commonly used as a terminal electron acceptor by anaerobic bacteria; as a result, it is completely degraded to the benign end product, chloride (Cl). Microbial reduction of perchlorate proceeds via a three-step process of ClO4 → ClO3→ ClO2 → O2 + Cl (6). Reduction of perchlorate to chlorate, and chlorate to chlorite is catalyzed by respiratory (per)chlorate reductases (3). Subsequent disproportionation of chlorite into Cl and O2 is catalyzed by chlorite dismutase, which is the fastest step, and the O2 produced is immediately consumed for energy of cell synthesis (6). Although organic compounds are the most well studied electron donors for (per)chlorate reduction, Fe(II) oxidation has also been shown to be linked to microbial ClO3 reduction (36).The main objective of the present study is to explore the potential use of ClO3 as an electron acceptor for the microbial oxidation of As(III) by anaerobic bacteria. The theoretical stoichiometry of the reaction is presented below: (1) Based on bioenergetic considerations, the reaction is feasible as indicated by the highly exergonic standard change in Gibbs free energy [ΔG0′ = −92.4 kJ mol−1 As(III)] calculated from E0′ values of 0.618 and 0.139 V for ClO3/Cl (6) and As(V)/As(III) (18), respectively.  相似文献   

5.
The aim of this study was to characterize a facultative chemolithotrophic arsenite-oxidizing bacterium by evaluating the growth and the rate of arsenite oxidation and to investigate the genetic determinants for arsenic resistance and CO(2) fixation. The strain under study, Ancylobacter dichloromethanicus As3-1b, in a minimal medium containing 3 mM of arsenite as electron donor and 6 mM of CO(2)-bicarbonate as the C source, has a doubling time (t(d)) of 8.1 h. Growth and arsenite oxidation were significantly enhanced by the presence of 0.01 % yeast extract, decreasing the t(d) to 4.3 h. The strain carried arsenite oxidase (aioA) gene highly similar to those of previously reported arsenite-oxidizing Alpha-proteobacteria. The RuBisCO Type-I (cbbL) gene was amplified and sequenced too, underscoring the ability of As3-1b to carry out autotrophic As(III) oxidation. The results suggest that A. dichloromethanicus As3-1b can be a good candidate for the oxidation of arsenite in polluted waters or groundwaters.  相似文献   

6.
The metabolism of propane and propionate by a soil isolate (Brevibacterium sp. strain JOB5) was investigated. The presence of isocitrate lyase in cells grown on isopropanol, acetate, or propane and the absence of this inducible enzyme in n-propanol- and propionate-grown cells suggested that propane is not metabolized via C-terminal oxidation. Methylmalonyl coenzyme A mutase and malate synthase are constitutive in this organism. The incorporation of 14CO2 into pyruvate accumulated during propionate utilization suggests that propionate is metabolized via the methyl-malonyl-succinate pathway. These results were further substantiated by radiorespirometric studies with propionate-1-14C, -2-14C, and -3-14C as substrate. Propane -2-14C was shown, by unlabeled competitor experiments, to be oxidized to acetone; acetone and isopropanol are oxidized in this organism to acetol. Cleavage of acetol to acetate and CO2 would yield the inducer for the isocitrate lyase present in propane-grown cells.  相似文献   

7.
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the γ-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.  相似文献   

8.
9.
王伟  李林  张忠明  张震  刘凡 《微生物学通报》2010,37(9):1287-1292
从山东崅屿采集的黄棕壤中分离得到一株具有抗Mn(Ⅱ)和Mn(Ⅱ)氧化双重活性的芽胞杆菌,其最高Mn(Ⅱ)耐受浓度达到130mmol/L,对Mn(Ⅱ)的氧化活性为3.3μmol/(L·d)。通过个体形态与培养特征观测、生理生化反应、G+Cmol%测定和16SrDNA序列比对分析等鉴定,确定该菌株为巨大芽胞杆菌(Bacillus megaterium),命名为MB283。该菌株在添加Mn(Ⅱ)(10mmol/L)条件下比不添加Mn(Ⅱ)表现出相对较快的生长速率。采用高温培养并结合0.01%SDS处理,从MB283菌株筛选到一株发生内生质粒消除的突变株MB287,具有与野生菌株类似的锰耐受活性,且对Mn(Ⅱ)的氧化活性与野生菌株相比无明显改变,表明野生菌株MB283中与锰抗性和锰氧化相关的基因可能是定位于该菌的染色体上。  相似文献   

10.
Marinobacter sp. MnI7-9, a deep-sea manganese [Mn(II)]-oxidizing bacterium isolated from the Indian Ocean, showed a high resistance to Mn(II) and other metals or metalloids and high Mn(II) oxidation/removal abilities. This strain was able to grow well when the Mn(II) concentration reached up to 10 mM, and at that concentration, 76.4% of the added Mn(II) was oxidized and 23.4% of the Mn(II) was adsorbed by the generated biogenic Mn oxides (total 99.9% Mn removal). Scanning electron microscope observation and X-ray diffraction analysis showed that the biogenic Mn oxides were in stick shapes, adhered to the cell surface, and contained two typical crystal structures of γ-MnOOH and δ-MnO2. In addition, the biogenic Mn oxides generated by strain MnI7-9 showed abilities to oxidize the highly toxic As(III) to the less toxic As(V), in both co-culture and after-collection systems. In the co-culture system containing 10 mM Mn(II) and 55 μM As(III), the maximum percentage of As(III) oxidation was 83.5%. In the after-collection system using the generated biogenic Mn oxides, 90% of the As(III) was oxidized into As(V), and the concentration of As(III) decreased from 55.02 to 5.55 μM. This study demonstrates the effective bioremediation by a deep-sea Mn(II)-oxidizing bacterium for the treatment of As-containing water and increases the knowledge of deep-sea bacterial Mn(II) oxidation mechanisms. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

11.
12.
The sediments in Blackstrap Lake, a prairie lake, contain over 90% of the non-clay fractions and its pH is near neutrality. Calcium and Mg carbonates, sesquioxidic components and their complexes with silica are present in a series of particle size fractions. The major clay minerals of the sediments are mica, montmorillonite, chlorite, vermiculite, kaolinite, and quartz. Organic matter of the lake sediments is relatively less important in the adsorption of arsenite. Calcium and Mg carbonates, micas, vermiculite, montmorillonite, kaolinite and chlorite are the active components but not the dominant components of the lake sediments in adsorbing arsenite. The porous sesquioxides and silico-sesquioxidic complexes present in a series of particle size fractions (clay, silt and sand). are the primary components in adsorbing arsenite. The retention of arsenite by these active components present in sediments would suppress the level of arsenite in fresh water and may thus restrain its movement to the food chain.  相似文献   

13.
Metabolic characteristics of a heterotrophic, nitrifier-denitrifier Alcaligenes sp. isolated from soil were further characterized. Pyruvic oxime and hydroxylamine were oxidized to nitrite aerobically by nitrification-adapted cells with specific activities (Vmax) of 0.066 and 0.003 μmol of N × min−1 × mg of protein−1, respectively, at 22°C. Km values were 15 and 42 μM for pyruvic oxime and hydroxylamine, respectively. The greater pyruvic oxime oxidation activity relative to hydroxylamine oxidation activity indicates that pyruvic oxime was a specific substrate and was not oxidized appreciably via its hydrolysis product, hydroxylamine. When grown as a denitrifier on nitrate, the bacterium could not aerobically oxidize pyruvic oxime or hydroxylamine to nitrite. However, hydroxylamine was converted to nearly equimolar amounts of ammonium ion and nitrous oxide, and the nature of this reaction is discussed. Cells grown as heterotrophic nitrifiers on pyruvic oxime contained two enzymes of denitrification, nitrate reductase and nitric oxide reductase. The nitrate reductase was the dissimilatory type, as evidenced by its extreme sensitivity to inhibition by azide and by its ability to be reversibly inhibited by oxygen. Cells grown aerobically on organic carbon sources other than pyruvic oxime contained none of the denitrifying enzymes surveyed but were able to oxidize pyruvic oxime to nitrite and reduce hydroxylamine to ammonium ion.  相似文献   

14.
15.
Arsenite oxidation and arsenate respiration by a new Thermus isolate   总被引:5,自引:0,他引:5  
A new microbial strain was isolated from an arsenic-rich terrestrial geothermal environment. The isolate, designated HR13, was identified as a Thermus species based on 16S rDNA phylogenetic relationships and close sequence similarity within the Thermus genus. Under aerobic conditions, Thermus HR13 was capable of rapidly oxidizing inorganic As(III) to As(V). As(III) was oxidized at a rate approximately 100-fold greater than abiotic rates. Metabolic energy was not gained from the oxidation reaction. In the absence of oxygen, Thermus HR13 grew by As(V) respiration coupled with lactate oxidation. The ability to oxidize and reduce arsenic has not been previously described within the Thermus genus.  相似文献   

16.
Aerobic Metabolism of Trichloroethylene by a Bacterial Isolate   总被引:29,自引:21,他引:8       下载免费PDF全文
A number of soil and water samples were screened for the biological capacity to metabolize trichloroethylene. One water sample was found to contain this capacity, and a gram-negative, rod-shaped bacterium which appeared to be responsible for the metabolic activity was isolated from this sample. The isolate degraded trichloroethylene to CO2 and unidentified, nonvolatile products. Oxygen and water from the original site of isolation were required for degradation.  相似文献   

17.
18.
Summary The use of synthetic palmitoyl carnitine, naturally occurring in cellular membranes, was investigated for the lysis of Alcaligenes eutrophus and Alcaligenes latus. The optimal concentration of the lysin was 1.0 mM and the lysis was almost completed in 60 minutes. Alcaligenes latus was more susceptible to the lytic activity of palmitoyl carnitine than Alcaligenes eutrophus. Palmitoyl carnitine was found to be a more effective lysin than lysozyme.  相似文献   

19.
The LC50 value of alkali-solubilized parasporal inclusion proteins of a Diptera-specific strain, belonging to Bacillus thuringiensis serovar canadensis, was 2.4 μg/ml for larvae of the mosquito, Aedes aegypti. A significant loss in larvicidal activity occurred when solubilized inclusion proteins were treated with A. aegypti larval gut extract, silkworm (Bombyx mori) larval gut juice, and the proteinase K. Approximately 90% of the larvicidal activity was destroyed upon treatment with proteases in 30 min. The parasporal inclusion was composed of major proteins of 65, 53, and 28 kDa and some other minor proteins. Proteolysis profiles showed that the 65-kDa major protein is highly sensitive to proteases. Purification experiments with DEAE-Toyopearl column chromatography revealed that the 65-kDa protein is responsible for the mosquitocidal activity of this strain. The LC50 value of the purified protein was 5.4 μg/ml. Received: 2 December 1996 / Accepted: 7 January 1997  相似文献   

20.
Rapid Methane Oxidation in a Landfill Cover Soil   总被引:28,自引:5,他引:28       下载免费PDF全文
Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m−2 day−1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = −0.54 h−1) to >104 ppm (k = −2.37 h−1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 μM, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter−1 day−1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter−1 day−1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号