首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), which can develop to urothelial cancer. Understanding which enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual susceptibility to this natural carcinogen. We examined the ability of prostaglandin H synthase (PHS) to activate AA to metabolites forming DNA adducts with the nuclease P1 and 1-butanol extraction enrichment procedure of the (32)P-postlabeling assay. PHS is a prominent enzyme in the kidney and urothelial tissues. Ram seminal vesicle (RSV) microsomes, which contain high levels of PHS, generated AA-DNA adduct patterns reproducing those found in renal tissues in CHN patients. 7-(Deoxyadenosin-N(6)-yl)aristolactam I, 7-(deoxyguanosin-N(2)-yl)aristolactam I and 7-(deoxyadenosin-N(6)-yl)aristolactam II were identified as AA-DNA adducts formed by AAI. Two adducts, 7-(deoxyguanosin-N(2)-yl)aristolactam II and 7-(deoxyadenosin-N(6)-yl)aristolactam II, were generated from AAII. According to the structures of the DNA adducts identified, nitroreduction is the crucial pathway in the metabolic activation of AA. The identity of PHS as the activating enzyme in RSV microsomes was proven with different cofactors and inhibitors. Only indomethacin, a selective inhibitor of PHS, significantly decreased the amount of adducts formed by RSV microsomes. The inhibitor of NADPH:CYP reductase (alpha-lipoic acid) and some selective inhibitors of cytochromes P450 (CYP) were not effective. Likewise, only cofactors of PHS, arachidonic acid and hydrogen peroxide, supported the DNA adduct formation of AAI and AAII, while NADPH and NADH were ineffective. These results demonstrate a key role of PHS in the activation pathway of AAI and AAII in the RSV microsomal system and were corroborated with the purified enzyme, namely ovine PHS-1. The results presented here are the first report demonstrating a reductive activation of nitroaromatic compounds by PHS-1.  相似文献   

2.
The phytoestrogens daidzein, genistein, equol and coumestrol were found to stimulate microsomal prostaglandin H synthase (PHS) in vitro in a concentration-dependent manner when PHS-activity was measured by arachidonic acid-dependent oxygen uptake. These compounds were co-oxidized by PHS and the conversion of parent compounds was measured by HPLC analysis. The stimulation of PHS-cyclooxygenase by these compounds was partially reversed at high concentrations probably due to their antioxidant properties causing inhibition. In contrast, the monomethyl ethers of daidzein and genistein, formononetin and biochanin A, had little or weakly inhibitory effect on PHS, and appear to be no or poor co-substrates for PHS. Compared to the equine estrogen equilin, its metabolite d-equilenin was poorly metabolized by PHS and inhibited rather than stimulated PHS-cyclooxygenase activity in vitro. The resorcylic acid lactones zearalenone and zeranol, on the other hand, were surprisingly good inhibitors of PHS-cyclooxygenase. Furthermore, zeranol inhibited both the arachidonic acid and the hydrogen-peroxide-dependent oxidation of DES in contrast to indomethacin which inhibited only cyclooxygenase-dependent co-oxidation of DES. The results of this in vitro study are discussed in the context of data on synthetic and steroidal estrogens and support the idea that PHS-activity may be modulated by interaction with certain estrogenic compounds.  相似文献   

3.
Bioactivation of xenobiotics by prostaglandin H synthase   总被引:4,自引:0,他引:4  
Prostaglandin H synthase (PHS) catalyzes the oxidation of arachidonic acid to prostaglandin H2 in reactions which utilize two activities, a cyclooxygenase and a peroxidase. These enzymatic activities generate enzyme- and substrate-derived free radical intermediates which can oxidize xenobiotics to biologically reactive intermediates. As a consequence, in the presence of arachidonic acid or a peroxide source, PHS can bioactivate many chemical carcinogens to their ultimate mutagenic and carcinogenic forms. In general, PHS-dependent bioactivation is most important in extrahepatic tissues with low monooxygenase activity such as the urinary bladder, renal medulla, skin and lung. Mutagenicity assays are useful in the detection of compounds which are converted to genotoxic metabolites during PHS oxidation. In addition, the oxidation of xenobiotics by PHS often form metabolites or adducts to cellular macromolecules which are specific for peroxidase- or peroxyl radical-dependent reactions. These specific metabolites and/or adducts have served as biological markers of xenobiotic bioactivation by PHS in certain tissues. Evidence is presented which supports a role for PHS in the bioactivation of several polycyclic aromatic hydrocarbons and aromatic amines, two classes of carcinogens which induce extrahepatic neoplasia. It should be emphasized that the toxicities induced by PHS-dependent bioactivation of xenobiotics are not limited to carcinogenicity. Examples are given which demonstrate a role for PHS in pulmonary toxicity, teratogenicity, nephrotoxicity and myelotoxicity.  相似文献   

4.
Estrone (E1), estradiol (E2), the catechol estrogens 2-OHE1 and 2-OHE2, and diethylstilbestrol (DES) were incubated with purified prostaglandin synthase (PHS) in vitro in the presence of arachidonic acid and their PHS-catalyzed cooxidation was determined. 2-OHE1, 2-OHE2, and DES were extensively metabolized by PHS peroxidase activity, E1 and E2 to a lesser extent. The cooxidation of the estrogens is accompanied by an increased prostaglandin formation and an increase in cyclooxygenase activity in vitro; progesterone and nylestriol are without effect. Prostaglandins have been proposed to play a role in events related to early estrogen action in tissues such as the uterus. The cooxidation of estrogens and their metabolites by prostaglandin hydroperoxidase might represent one type of interaction between the hormones and the arachidonic acid cascade that could lead to changes in prostaglandins.  相似文献   

5.
We investigated the covalent binding of intermediates in prostaglandin biosynthesis to tissue macromolecules. Following incubation of [1-14C]arachidonic acid with the microsomal fraction from guinea pig lung, ram or bovine seminal vesicle, human platelets, rabbit kidney, or rat stomach fundus, the amount of covalent binding of arachidonic acid metabolites expressed as percentage of total arachidonic acid metabolized varied from tissue to tissue ranging from 3% in human platelets to 18.2% in ram seminal vesicles. In general, the thromboxane synthesizing tissues had less covalently bound metabolites than the other tissues. The amount of covalently bound metabolites was increased in the guinea pig lung microsomes when the thromboxane synthetase inhibitor, N-0164, was added to the incubation mixture. The covalent binding of arachidonic acid metabolite(s) was greatly reduced by the addition of glutathione to the incubation mixture. In addition to the covalently bound metabolites, water-soluble metabolites derived from arachidonic acid metabolism were also observed. The amount of water-soluble metabolites was small in each tissue except for the rat stomach fundus. In the rat stomach fundus the water-soluble metabolites accounted for over 50% of the total metabolites. Conditions which would tend to increase or decrease the levels of free prostaglandin endoperoxides during the incubation of arachidonic acid with the microsomes gave increased or decreased levels of covalent binding. Our data suggest that the prostaglandin endoperoxides are responsible for the covalent binding observed during prostaglandin biosynthesis. This covalent binding to tissue macromolecules may be of physiological and pathological significance.  相似文献   

6.
TPA regulation of prostaglandin H synthase activity in primary and subcultured dog urothelial cells was investigated. Previous studies have demonstrated an early (0-2 hr) increase in PGE2 synthesis mediated by TPA which is dependent upon release of endogenous arachidonic acid by a phospholipase-mediated pathway. In this study, prostaglandin H synthase activity was assessed directly with microsomes and indirectly after addition of exogenous arachidonic acid at a maximum effective concentration (100 microM) to media. PGE2 synthesis, measured by radioimmunoassay, served as an index of prostaglandin H synthase activity. After a 24-hr incubation with 0.1 microM TPA or 1.0 microM A23187, arachidonic acid elicited significantly more PGE2 synthesis in agonist-treated cells than it did in control cells in primary culture. Microsomes from 24-hr TPA-treated cells exhibited significantly more prostaglandin H synthase activity than did those from control cells. In addition, the PGE2 content of overnight media was approximately 10-fold greater in TPA-treated cells than in control cells. The late (24 hr) response was more sensitive to lower concentrations of TPA than was the earlier (0-2 hr) response. TPA at 0.1 microM was a maximum effective dose for both responses. The 24-hr response was blocked by cycloheximide and staurosporine, inhibitors of protein synthesis and protein kinase C, respectively. Pretreatment of cells with aspirin, an irreversible inhibitor of prostaglandin H synthase, prior to addition of TPA did not prevent the late TPA-mediated increase in PGE2 synthesis. Subcultured cells exhibited both an early and a late TPA response. Only the early response was inhibited by aspirin pretreatment. Results suggest that the late response with TPA is caused by de novo synthesis of prostaglandin H synthase. Thus, primary and subcultured dog urothelial cells possess two distinct mechanisms for regulating signal transduction by arachidonic acid metabolism. This study provides a basis for assessing these mechanisms of signal transduction in urothelial cell lines and transformed cells.  相似文献   

7.
Prostaglandin H synthase oxidizes arachidonic acid to prostaglandin G2 (PGG2) via its cyclooxygenase activity and reduces PGG2 to prostaglandin H2 by its peroxidase activity. The purpose of this study was to determine if endogenously generated PGG2 is the preferred substrate for the peroxidase compared with exogenous PGG2. Arachidonic acid and varying concentrations of exogenous PGG2 were incubated with ram seminal vesicle microsomes or purified prostaglandin H synthase in the presence of the reducing cosubstrate, aminopyrine. The formation of the aminopyrine cation free radical (AP.+) served as an index of peroxide reduction. The simultaneous addition of PGG2 with arachidonic acid did not alter cyclooxygenase activity of ram seminal vesicle microsomes or the formation of the AP.+. This suggests that the formation of AP.+, catalyzed by the peroxidase, was supported by endogenous endoperoxide formed from arachidonic acid oxidation rather than by the reduction of exogenous PGG2. In addition to the AP.+ assay, the reduction of exogenous versus endogenous PGG2 was studied by using [5,6,8,9,11,12,14,15-2H]arachidonic acid and unlabeled PGG2 as substrates, with gas chromatography-mass spectrometry techniques to measure the amount of reduction of endogenous versus exogenous PGG2. Two distinct results were observed. With ram seminal vesicle microsomes, little reduction of exogenous PGG2 was observed even under conditions in which all of the endogenous PGG2 was reduced. In contrast, studies with purified prostaglandin H synthase showed complete reduction of both exogenous and endogenous PGG2 using similar experimental conditions. Our findings indicate that PGG2 formed by the oxidation of arachidonic acid by prostaglandin H synthase in microsomal membranes is reduced preferentially by prostaglandin H synthase.  相似文献   

8.
Prostaglandin H synthase (PHS) from ram seminal vesicle microsomes was found to catalyze the release of tritium (3H) from estradiol (E2) regiospecifically labeled in position C-2 or C-4 of ring A but not from positions C-17 alpha, C-16 alpha, or C-6,7. Formation of 3H2O from ring A of E2 is dependent upon native enzyme supplemented with either arachidonic acid, eicosapentaenoic acid, or hydrogen peroxide and proceeds very rapidly as do other cooxidation reactions catalyzed by PHS-peroxidase. The 3H-loss from ring A of E2 reflecting oxidative displacement of this isotope by PHS increases linearly up to 100 microM under our conditions (8-45 nmol/mg x 5 min). Loss of tritium in various blanks is negligible by comparison. Indomethacin (0.07 and 0.2 mM) inhibited the PHS-dependent release of 3H2O from estradiol but less efficiently than it inhibited DES-cooxidation measured in parallel incubations under similar conditions. Addition of EDTA (0.5 mM) had no effect on the regiospecific transfer of 3H from E2 or on DES-oxidation; ascorbic acid (0.5 mM) or NADH (0.33 mM) clearly inhibited both reactions and to a similar extent. These data suggest that estradiol-2/4-hydroxylation can be catalyzed by PHS in vitro probably via its peroxidase activity and point to PHS as an enzyme that could contribute to catechol estrogen formation in vitro by tissue preparations in the presence of unsaturated fatty acids or peroxides.  相似文献   

9.
We studied in rats the effect of dexamethasone (2.5 mg/kg per week) on the conversion of radiolabeled arachidonic acid to prostaglandins by renal medulla slices, microsomes, and homogenates. The steroid did not affect the rate of conversion of arachidonic acid to prostaglandins by renal medulla slices, but significantly increased the rate of conversion by both the microsomes and the 10,000 × g supernatatant of renal medulla homogenates. We conclude (a) that dexamethasone treatment increases the activity of renal medulla prostaglandin synthetase measured in broken cells preparations, and (b) that such a change in enzyme activity is not manifested by augmentation of prostaglandin synthesis in renal medulla slices incubated with exogenous arachidonic acid.  相似文献   

10.
Metabolism of prostaglandin endoperoxide by microsomes from cat lung   总被引:1,自引:0,他引:1  
It has been reported that the prostaglandin (PG) precursor, arachidonic acid, produces divergent hemodynamic responses in the feline pulmonary vascular bed. However, the pattern of arachidonic acid products formed in the lung of this species is unknown. In order to determine the type and activity of terminal enzymes in the lung, prostaglandin biosynthesis by microsomes from cat lung was studied using the prostaglandin endoperoxide, PGH2, as a substrate. The major products of incubations of PGH2 with microsomes were thromboxane (TX) B2 (the major metabolite of TXA2), 6-keto-PGF1 alpha (the breakdown product of PGI2) and 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Formation of TXB2 was markedly reduced by imidazole. Tranylcypromine decreased the formation of TXB2 and HHT and inhibited the formation of 6-keto-PGF1 alpha. At low PGH2 concentrations, equal production of TXB2 and 6-keto-PGF1 alpha was observed. However, as PGH2 concentration increased, 6-keto-PGF1 alpha production approached early saturation while TXB2 production increased in a linear fashion. These results suggest that enzymatic formation of TXA2 and PGI2 is a function of substrate availability in the lung. These findings provide a possible explanation for the divergent hemodynamic responses to arachidonic acid infusions at high and low concentrations in the feline pulmonary vascular bed.  相似文献   

11.
Microsomal preparations from hamster kidney, a target tissue for the carcinogenic action of stilbene-type and steroidal estrogens, catalyze the oxidative metabolism of diethylstilbestrol (DES). The formation of the major metabolite Z,Z-dienestrol and of reactive intermediates capable of protein binding were mediated by enzyme activities requiring nicotinamide-adenine dinucleotide phosphate (reduced form-NADPH), cumene hydroperoxide, or arachidonic acid (ARA). In addition, hydroxylated DES metabolites were detected in NADPH-supplemented incubations. The NADPH-dependent oxidation of DES was inhibited by SKF 525A and metyrapone. Monooxygenase-catalyzed metabolism was apparently responsible for the majority of DES oxidation in microsomes from whole hamster kidneys in vitro and this activity is preferentially localized in the kidney cortex. However, ARA-dependent, i.e., prostaglandin H synthase (PHS) mediated oxidation of DES and of the catechol estrogen 2-hydroxyestrone was demonstrated as well in the medulla of both rabbit and hamster kidney. It is proposed that monooxygenase and PHS activities act in concert in the metabolic activation of carcinogenic estrogens. This appears to apply in particular to steroidal estrogens, since catechol estrogens formed by monooxygenases are further oxidized to reactive intermediates by PHS and other peroxidatic enzymes.  相似文献   

12.
1-Carboxyalkylimidazoles inhibited the conversion of prostaglandin H2 to thromboxane B2 and 12L-hydroxy-5, 8, 10- heptadecatrienoic acid by a partially purified enzyme (prostaglandin endoperoxide thromboxane isomerase) from bovine platelet microsomes. The degree of the inhibition was dependent on the length of carboxyalkyl chain. 1-Carboxyheptylimidazole was the most potent inhibitor, and an almost complete inhibition was obtained at a concentration on the order of 1 μM. The inhibition, as examined with 1-carboxyheptylimidazole, was of noncompetitive type. These 1-carboxyalkylimidazoles did not affect the formation of prostaglandin H2 from arachidonic acid. Such a selective inhibition was also demonstrated by the reaction of bovine platelet microsomes with arachidonic acid in the presence of 1-carboxyheptylimidazole, resulting in the accumulation of prostaglandin H2 as an intermediate. Furthermore, a series of 1-alkylimidazoles with no carboxyl group also inhibited the isomerase at higher concentrations. However, the inhibition was not specific for the isomerase; namely, the prostaglandin H2 formation from arachidonic acid was also affected.  相似文献   

13.
We investigated the utilization of exogenous 14C-labelled arachidonic acid by the cyclooxygenase system of the gastric mucosa and its alteration by cytosolic factors, protein binding, glutathione peroxidase (GSH-Px), and hydrogen peroxides.Total prostaglandin (PG) synthesis from gastric microsomes was reduced in a dose- dependent manner to 12% and 68% of controls by increasing amounts of the 105,000g supernatant or albumin (8mg protein/ml), respectively (p<0.01). The inhibitory cytosolic factor was heat labile, protease sensitive, and was retained by a 300,000 Dalton ultrafiltration membrane. Thus, it was likely a protein. Other possible inhibitory mechanisms like protease- or heme-induced destabilization of the cyclooxygenase, haptoglobin-mediated inhibition, or self-inactivation by endogenous substrate were excluded.N-ethylmaleimide (NEM), an agent that alkylates sulfhydryl-groups thereby inhibiting GSH-Px, abolished the inhibitory effect of cytosol in a dose-dependent fashion. In contrast to their inhibition of prostaglandin synthesis, the binding of arachidonic acid by albumin or cytosolic proteins accounted to 75% and 19% under comparable conditions, respectively, however, cytosolic fatty acid binding was unaffected by NEM. Thus, it was concluded that the inhibitory effect of cytosol, in contrast to albumin, was mediated by a sulfhydryl-depending process, probably a GSH-Px. This conclusion was supported by a qualitatively comparable inhibition by a purified GSH-Px from bovine erythrocytes.The inhibitory action of cytosolic proteins was reduced significantly by increasing concentrations or repeated application of arachidonic acid; therefore, cytosolic GSH-Px was likely to affect substrate utilization by the microsomal PGH synthase through reduction of activating substrate peroxides.Similarly, the in vitro formation of cyclooxygenase products by mucosal homogenate or gastric microsomes in the absence of cytosol was limited at substrate concentrations below 80μM, despite sufficient nonesterified arachidonic acid remaining in the incubate. This limitation was mediated only partially by self-inactivation of the prostaglandin cyclooxygenase. Neither N-ethylmaleimide nor repeated application of hydrogen peroxides increased substrate utilization by isolated microsomes, excluding contamination by GSH-Px or simply a lack of hydrogen peroxides as possible mechanisms for the limited utilization. From these results, a special role of substrate-linked lipid peroxides in the activation of mucosal prostaglandin synthesis is proposed. The reduction of these peroxides by glutathione dependent or independent peroxidases, e.g. the PGH synthase-linked hydroperoxidase activity itself, could explain the reduced utilization of nonesterified arachidonic acid by the gastric mucosa.  相似文献   

14.
We investigated the utilization of exogenous 14C-labelled arachidonic acid by the cyclooxygenase system of the gastric mucosa and its alteration by cytosolic factors, protein binding, glutathione peroxidase (GSH-Px), and hydrogen peroxides. Total prostaglandin (PG) synthesis from gastric microsomes was reduced in a dose- dependent manner to 12% and 68% of controls by increasing amounts of the 105,000g supernatant or albumin (8mg protein/ml), respectively (p less than 0.01). The inhibitory cytosolic factor was heat labile, protease sensitive, and was retained by a 300,000 Dalton ultrafiltration membrane. Thus, it was likely a protein. Other possible inhibitory mechanisms like protease- or heme-induced destabilization of the cyclooxygenase, haptoglobin-mediated inhibition, or self-inactivation by endogenous substrate were excluded. N-ethylmaleimide (NEM), an agent that alkylates sulfhydryl-groups thereby inhibiting GSH-Px, abolished the inhibitory effect of cytosol in a dose-dependent fashion. In contrast to their inhibition of prostaglandin synthesis, the binding of arachidonic acid by albumin or cytosolic proteins accounted to 75% and 19% under comparable conditions, respectively, however, cytosolic fatty acid binding was unaffected by NEM. Thus, it was concluded that the inhibitory effect of cytosol, in contrast to albumin, was mediated by a sulfhydryl-depending process, probably a GSH-Px. This conclusion was supported by a qualitatively comparable inhibition by a purified GSH-Px from bovine erythrocytes. The inhibitory action of cytosolic proteins was reduced significantly by increasing concentrations or repeated application of arachidonic acid; therefore, cytosolic GSH-Px was likely to affect substrate utilization by the microsomal PGH synthase through reduction of activating substrate peroxides. Similarly, the in vitro formation of cyclooxygenase products by mucosal homogenate or gastric microsomes in the absence of cytosol was limited at substrate concentrations below 80 microM, despite sufficient nonesterified arachidonic acid remaining in the incubate. This limitation was mediated only partially by self-inactivation of the prostaglandin cyclooxygenase. Neither N-ethylmaleimide nor repeated application of hydrogen peroxides increased substrate utilization by isolated microsomes, excluding contamination by GSH-Px or simply a lack of hydrogen peroxides as possible mechanisms for the limited utilization. From these results, a special role of substrate-linked lipid peroxides in the activation of mucosal prostaglandin synthesis is proposed. The reduction of these peroxides by glutathione dependent or independent peroxidases, e.g. the PGH synthase-linked hydroperoxidase activity itself, could explain the reduced utilization of nonesterified arachidonic acid by the gastric mucosa.  相似文献   

15.
The oxidation of glutathione to a thiyl radical by prostaglandin H synthase was investigated. Ram seminal vesicle microsomes, in the presence of arachidonic acid, oxidized glutathione to its thiyl-free radical metabolite, which was detected by ESR using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. Oxidation of glutathione was dependent on arachidonic acid and inhibited by indomethacin. Peroxides also supported oxidation, indicating that the oxidation was by prostaglandin hydroperoxidase. Glutathione served as a reducingcofactor for the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid at 1.5-2 times the nonenzymatic rate. Although purified prostaglandin H synthase in the presence of either H2O2 or 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid oxidized glutathione to a thiyl radical, arachidonic acid did not support glutathione oxidation. Glutathione also inhibited cyclooxygenase activity as determined by measuring oxygen incorporation into arachidonic acid. Reverse-phase high pressure liquid chromatography analysis of the arachidonic acid metabolites indicated that the presence of glutathione in an incubation altered the metabolite profile. In the absence of the cofactor, the metabolites were PGD2, PGE2, and 15-hydroperoxy-PGE2 (where PG indicates prostaglandin), while in the presence of glutathione, the only metabolite was PGE2. These results indicate that glutathione not only serves as a cofactor for prostaglandin E isomerase but is also a reducing cofactor for prostaglandin H hydroperoxidase. Assuming that glutathione thiyl-free radical observed in the trapping experiments is involved in the enzymatic reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid, then a 1-electron donation from glutathione to prostaglandin hydroperoxidase is indicated.  相似文献   

16.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

17.
Flurbiprofen-Sepharose and Acetyl-Sepharose have been prepared by coupling dl-2-(2-fluoro-4-biphenylyl)propionic acid [Flurbiprofen] and acetic acid, respectively, to 3-(N-[3-aminopropyl])aminopropyl Sepharose 4B using a water soluble carbodiimide. The arachidonic acid oxygenase activity of solubilized bovine seminal vesicle microsomes is retarded during chromatography on Flurbiprofen-Sepharose but not Acetyl-Sepharose. Thus binding of the oxygenase to Flurbiprofen-Sepharose results from interaction with the immobilized inhibitor. However, the impure oxygenase is either not bound and/or not eluted in a biospecific manner since the abilities of flufenamic acid, R(+) and S(-)-5-cyclohexylindan-1-carnboxylic acid, and R and S-Naproxen to remove the enzyme from Flurbiprofen-Sepharose do not parallel the relative efficacies of these compounds as prostaglandin synthesis inhibitors. Nevertheless, gradient elution of arachidonic acid oxygenase activity from Flurbiprofen-Sepharose with flufenamic acid provides a 15 fold enrichment of the enzyme from solubilized bovine seminal vesicle microsomes in 80% yield indicating that this chromatographic reagent can be a powerful tool for use in purification of the prostaglandin synthetase.  相似文献   

18.
The conversion of exogenous arachidonic acid into prostaglandins was studied in human placenta and fetal membrane microsomes. Only one prostaglandin was formed, prostaglandin E2 (PGE2), in fetal membrane microsomes. In placental microsomes PGE2 was further transformed into 15 keto-PGE2. Cofactor requirements and some characteristics of the system were studied. 1 to 3% conversion of arachidonic acid into prostaglandins was observed in placental microsomes and 5 to 8% conversion in fetal membrane microsomes.  相似文献   

19.
Abstract: Differences in prostaglandin H synthetase (PHS) activity in the substantia nigra of age- and post-mortem interval-matched parkinsonian, Alzheimer's, and normal control brain tissue were assessed. Prostaglandin E2 (PGE2, an index of PHS activity) was higher in substantia nigra of parkinsonian brain tissue than Alzheimer's or control tissue. Incubation of substantia nigra slices with arachidonic acid (AA) increased PGE2 synthesis. Dopamine stimulated PHS synthesis of PGE2. [3H]Dopamine was activated by PHS to electrophilic intermediate(s) that covalently bound to DNA, microtubulin protein, bovine serum albumin, and sulfhydryl reagents. When AA was replaced by hydrogen peroxide, PHS/H2O2-supported binding proceeded at rates similar to those observed with PHS/AA. Indomethacin and aspirin inhibited AA-mediated cooxidation of dopamine but not H2O2-mediated metabolism. PHS-mediated metabolism of dopamine was not affected by monoamine oxidase inhibitors. Substrate requirements and effects of specific inhibitors suggest cooxidation of dopamine is mediated by the hydroperoxidase activity of PHS. 32P-postlabeling was used to detect dopamine-DNA adducts. PHS/AA activation of dopamine in the presence of DNA resulted in the formation of five dopamine-DNA adducts, i.e., 23, 43, 114, 70, and 270 amol/µg DNA. DNA adduct formation was PHS, AA, and dopamine dependent. PHS catalyzed cooxidation of dopamine in dopaminergic neuronal degeneration is discussed.  相似文献   

20.
The effect of triarachidonin on the synthesis of prostaglandins in rabbit kidney medulla microsomes was examined. Medulla microsomes were incubated with triarachidonin in 0.1 M--Tris/HCl buffer (pH 7.0) containing reduced glutathione and hydroquinone and the formed prostaglandin E2, prostaglandin F2 alpha and prostaglandin D2 were measured by high-pressure liquid chromatography using 9-anthryldiazomethane for derivatization. The addition of triarachidonin (1-10 microM) stimulated prostaglandin formation in a dose-dependent manner. Under our incubation conditions rabbit kidney medulla was found to produce prostaglandin E2 mainly. When arachidonic acid, instead of triarachidonin, was added to the incubation mixture of microsomes, the identical profile of prostaglandin products was obtained. When the pH of the reaction mixture was changed from 7.0 to 8.0, the rate of triarachidonin-induced prostaglandin E2 formation was approximately 60% of that observed at pH 7.0. Studies utilizing Ca2+ and EGTA revealed that triacylglycerol lipase of kidney medulla is independent of Ca2+. The addition of epinephrine made the stimulatory effect of triarachidonin on prostaglandin E2 formation more pronounced. These results suggest that epinephrine-activated triacylglycerol lipase is present in the renomedullary microsomes, and this enzyme activity is a potential mediator of release of arachidonic acid for prostaglandin synthesis in the kidney medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号