首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.Chronic ingestion of caffeine causes a significant increase in levels of A1-adenosine, nicotinic and muscarinic receptors, serotonergic receptors, GABAA receptors and L-type calcium channels in cerebral cortical membranes from mice NIH Swiss strain mice.2.Chronic theophylline and paraxanthine had effects similar to those of caffeine except that levels of L-type channels were unchanged. Chronic theobromine, a weak adenosine antagonist, and 1-isobutyl-3-methylxanthine (IBMX), a potent adenosine antagonist and phosphodiesterase inhibitor, caused only an increase in levels of A1-adenosine receptors. A combination of chronic caffeine and IBMX had the same effects on receptors as caffeine alone. Chronic 3,7-dimethyl-1-propargylxanthine (DMPX), a somewhat selective A2A-antagonist, caused only an increase in levels of A1-adenosine receptors. Pentoxyfylline, an adenosine-uptake inhibitor inactive at adenosine receptors, had no effect on receptor levels or calcium channels.3.A comparison of plasma and brain levels of xanthines indicated that caffeine penetrated more readily and attained somewhat higher brain levels than theophylline or theobromine. Penetration and levels were even lower for IBMX, paraxanthine, DMPX, and pentoxyfylline.4.The results suggest that effective blockade of both A1 and A2A-adenosine receptors is necessary for the full spectrum of biochemical changes elicited by chronic ingestion of xanthines, such as caffeine, theophylline, and paraxanthine.  相似文献   

2.
The response of crayfish synaptic terminals to drugs began to be studied to characterize the terminal’s physiological characteristics. Caffeine, the first drug to be studied, was selected to enhance synaptic transmission because of its ability to increase calcium release from internal stores. 1. The largest excitor neuron to the superficial flexor muscle system of Procambarus clarkii was stimulated at 10 Hz while recording junction potentials from several lateral muscle fibers. 2. Caffeine unexpectedly decreased synaptic transmission in this system in a dosage-dependent manner. The depressing effect of caffeine was observed at 5 mM caffeine and junction potentials disappeared completely at 50 mM. Washing the preparation in fresh control Ringers did not restore the amplitudes of the junction potentials. 3. Changes in extracellular calcium concentrations delayed or depressed the caffeine effect depending on the calcium gradient across the membrane or the caffeine dosage. The data suggest that calcium is involved in caffeine’s response in this system in a way yet to be determined.  相似文献   

3.
The insertion and removal of NMDA receptors from the synapse are critical events that modulate synaptic plasticity. While a great deal of progress has been made on understanding the mechanisms that modulate trafficking of NMDA receptors, we do not currently understand the molecular events required for the fusion of receptor containing vesicles with the plasma membrane. Here, we show that sphingomyelin phosphodiesterase 3 (also known as neutral sphingomyelinase-2) is critical for tumor necrosis factor (TNF) α-induced trafficking of NMDA receptors and synaptic plasticity. TNFα initiated a rapid increase in ceramide that was associated with increased surface localization of NMDA receptor NR1 subunits and a specific clustering of NR1 phosphorylated on serines 896 and 897 into lipid rafts. Brief applications of TNFα increased the rate and amplitude of NMDA-evoked calcium bursts and enhanced excitatory post-synaptic currents. Pharmacological inhibition or genetic mutation of neutral sphingomyelinase-2 prevented TNFα-induced generation of ceramide, phosphorylation of NR1 subunits, clustering of NR1, enhancement of NMDA-evoked calcium flux and excitatory post-synaptic currents.  相似文献   

4.
The present study was designed to investigate the role of adenosine in the hypoxic depression of synaptic transmission in rat hippocampus. An in vivo model of hypoxic synaptic depression was developed in which the common carotid artery was occluded on one side in the urethane-anesthetized rat. Inspired oxygen levels were controlled through a tracheal cannula. Rats were placed in a stereotaxic apparatus for stimulation and recording of bilateral hippocampal field excitatory postsynaptic potentials. The percent inspired oxygen could be reduced to levels that produced a reversible and repeatable depression of evoked synaptic transmission restricted to the hippocampus ipsilateral to the occlusion. Further reduction in the level of inspired oxygen depressed synaptic transmission recorded from both hippocampi. The adenosine nonselective antagonist caffeine and the A(1) selective antagonist 8-cyclopentyltheophylline prevented the initial depression in synaptic transmission. We conclude that the initial depression of synaptic transmission observed in the rat hippocampus in vivo is due to endogenous adenosine acting at neuronal adenosine A(1) receptors.  相似文献   

5.
Caffeine which is present in soft drinks has been shown to increase alertness and allays drowsiness and fatigue. The aim of this study is to investigate whether caffeine could produce a long-term effect on the synaptic transmission using extracellular recording technique in the hippocampal slices. Bath application of caffeine (100 microM) reversibly increased the slope of field excitatory postsynaptic potential (fEPSP). Forskolin (25 microM) by its own did not affect the fEPSP significantly. However, in the presence of caffeine, forskolin induced a long-term potentiation (LTP) of fEPSP. Enprofylline which has been shown to exhibit some actions like caffeine but with a low adenosine antagonistic potency did not affect the normal synaptic transmission or the effect of forskolin at a lower concentration (10 microM). However, when the concentrations were increased to 20 and 50 microM, enprofylline significantly enhanced the fEPSP slope and promoted forskolin-induced LTP. The parallel increase of fEPSP and promotion of LTP observed with enprofylline suggests that adenosine A1 antagonism is the primary mechanism behind caffeine's effect. This hypothesis was further strengthened by the finding that promotion of forskolin-induced LTP was mimicked by the non-xanthine adenosine antagonist 9-chloro-2-(furyl)[1,2,4]triazolo [1,5-c]quinazolin-5-amine (CGS 15943). The promotion of forskolin-induced LTP provides a cellular basis behind caffeine's increase in capacity for sustained intellectual performance.  相似文献   

6.
Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral‐CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2′R,3′R)‐2‐(2′,3′‐dicarboxy‐cyclopropyl) glycine (DCGIV; 5 μM), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 μM), resulted in a long‐lasting depression of synaptic strength. When zaprinast (20 μM) was combined with a cell‐permeant PKA inhibitor H‐89 (10 μM), the need for mGluR IIs was bypassed. DCGIV, when combined with a “submaximal” low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)‐alpha‐ethylglutamic acid (EGLU; 5 μM), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)‐a‐Cyclopropyl‐[3‐3H]‐4‐phosphonophenylglycine (CPPG; 10 μM), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3‐dipropyl‐8‐cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6‐cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 μM), was sufficient to elicit CLTD. Inhibition of PKA with H‐89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

7.
Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2'R,3'R)-2-(2',3'-dicarboxy-cyclopropyl) glycine (DCGIV; 5 microM), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 microM), resulted in a long-lasting depression of synaptic strength. When zaprinast (20 microM) was combined with a cell-permeant PKA inhibitor H-89 (10 microM), the need for mGluR IIs was bypassed. DCGIV, when combined with a "submaximal" low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)-alpha-ethylglutamic acid (EGLU; 5 microM), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)-a-Cyclopropyl-[3- 3H]-4-phosphonophenylglycine (CPPG; 10 microM), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 microM), was sufficient to elicit CLTD. Inhibition of PKA with H-89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity.  相似文献   

8.
海马脑片缺氧早期腺苷的作用及其机制研究   总被引:2,自引:0,他引:2  
本实验采用海马脑片细胞外记录技术,观察了缺氧早期突触功能可逆性抑制中腺苷的作用并初步探讨其作用机制。结果发现:海马脑片缺氧早期突触功能出现可逆性抑制,与外源施加高浓度腺苷反应类同。腺苷A1受体拮抗剂CPT以及K+通道阻断剂4-AP可阻断这种抑制作用;而TEA以及ATP敏感K+通道阻断剂glipizide均未见显著效应。结果提示:缺氧早期突触功能可逆性抑制与内源性腺苷大量释放有关,腺苷通过作用其A1受体,激活4-AP敏感K+通道,从而抑制突触传递,显示其抗缺氧作用。ATP敏感性K+通道可能不参于这个过程。  相似文献   

9.
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.  相似文献   

10.
Adenosine and adenosine A(2A) receptor agonists have been shown to limit myocardial infarct size when given at vasodilatory doses during reperfusion. This beneficial effect is thought to be due, in part, to stimulation of adenosine A(2A) receptors on inflammatory cells. The specific aims of this study were to determine whether the anti-inflammatory and cardioprotective properties of a novel adenosine A(2A) receptor agonist, ATL-146e (ATL), alone or in combination with the phosphodiesterase IV inhibitor rolipram would occur using very low, nonvasodilating doses. In a canine model of reperfused myocardial infarction, low-dose ATL given alone reduced infarct size by 45% (P < 0.05 vs. control). When ATL was combined with a very low dose of rolipram (0.001 microg.kg(-1).min(-1)), a marked reduction in P-selectin expression and neutrophil infiltration (51% lower; P < 0.001 vs. control) was seen and the infarct size reduction (58% lower; P < 0.01 vs. control) was greater than observed with ATL (45% lower; P < 0.05) or rolipram (33% lower; P < 0.05) alone. In conclusion, a low, nonvasodilating dose of ATL, a highly selective adenosine A(2A) receptor agonist, reduced infarct size after reperfusion. Furthermore, combining ATL and the phosphodiesterase IV inhibitor rolipram reduced infarct size even more than either agent alone. Such combination therapy may be beneficial clinically by potentiating cardioprotection after coronary reperfusion at doses far below those producing vasodilatation or side effects.  相似文献   

11.
Adenosine is released from the compromised brain and exerts a predominately neuroprotective influence. However, the time-course of adenosine release and its relationship to synaptic activity during metabolic stress is not fully understood. Here, we describe experiments using an enzyme-based adenosine sensor to show that adenosine potently (IC50 approximately 1 microm) inhibits excitatory synaptic transmission in area CA1 during oxygen/glucose deprivation ('ischaemia'), and that the prolonged post-ischaemic presence of extracellular adenosine sustains the depression of the field excitatory postsynaptic potential (fEPSP). N-methyl-D-aspartate (NMDA) receptor antagonism promotes post-ischaemic recovery of the fEPSP, in parallel with reduced release of adenosine. Paradoxically, however, after ischaemia the fEPSP recovers in the face of concentrations of adenosine capable of fully eliminating synaptic transmission during ischaemia. This hysteresis is not prevented by NMDA receptor antagonism, is observed during repeated ischaemia when adenosine release is reduced, and does not reflect desensitization of adenosine A1 receptors. We conclude that adenosine exerts powerful inhibitory actions on excitatory synaptic transmission both during, and for some considerable time after, ischaemia. Therapeutic strategies designed to exploit both the continued presence of adenosine and activity of A1 receptors could provide benefits in individuals who have suffered acute injury to the CNS.  相似文献   

12.
Paradoxical stimulation of human sperm motility by 2-deoxyadenosine   总被引:3,自引:0,他引:3  
Exposure of cryostored human spermatozoa to 2-deoxyadenosine resulted in significant increases in percentage motility, the linear velocity of progression and the frequency of sperm head rotation, which were maximal at a dose of 2.5 mM. At the same dose both adenosine and caffeine significantly increased percentage motility, although neither compound influenced the quality of sperm movement as assessed by time-exposure photomicrography. 2-Deoxyadenosine was also significantly more effective than caffeine in sustaining the motility of cryostored spermatozoa as well as in enhancing the motility of fresh and washed preparations of human spermatozoa. The ability of caffeine and 2-deoxyadenosine to influence sperm motility was counteracted by the presence of calcium in the external medium although the latter was less susceptible to such inhibition and still enhanced motility in the presence of calcium levels (1.7 mM) typical of media used for in-vitro fertilization. The mechanism of action of 2-deoxyadenosine was associated with an increase of intracellular cAMP levels, which were sustained over a time course lasting from 5 to 180 min and exhibited significant dose dependency over the range 1-10 mM. The response to 2-deoxyadenosine did not involve any changes in the steady state levels of ATP and was augmented by the presence of the phosphodiesterase inhibitors, IBMX and caffeine. We conclude that 2-deoxyadenosine is a powerful stimulator of human sperm motility and that this effect involves an increase of intracellular cAMP levels via mechanisms which do not involve the classical 'R'-site receptor mediated pathway.  相似文献   

13.
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation.  相似文献   

14.
The mammalian dorsal cochlear nucleus (DCN) is considered to contribute to the localization of the sound sources. Fusiform cells (FCs), principal projection neurons in the DCN, integrate two excitatory inputs from auditory nerve fibers (ANFs) and parallel fibers (PFs). Although an immunohistochemical study suggested presence of GABAB receptors at excitatory presynaptic terminals in the DCN, it has not been elucidated how GABAB receptors modulate the synaptic transmission to FCs. Here, we examined effects of baclofen on the transmission in vitro. Baclofen reduced both PF-EPSC and ANF-EPSC by reducing transmitter releases, and it enhanced the facilitation in PF-FC synapses and prevented the depression in ANF-FC synapses. The enhancement and prevention were prominent during high-frequency (50 Hz) synaptic input, suggesting the activation of presynaptic GABAB receptors may optimize both PF-FC and ANF-FC synapses for high-frequency transmission. Postsynaptic GABAB receptors activated GIRK current and would further modulate the activity of FCs.  相似文献   

15.
Abstract— Norepinephrine, epinephrine, isoproterenol, and adenosine elicit enhanced accumulations of cyclic AMP in incubated slices of rat cerebral cortex. Combinations of norepinephrine, epinephrine, isoproterenol, or histamine with adenosine have a greater than additive effect on cyclic AMP levels. The effects of isoproterenol appear to be mediated via a classical β-adrenergic receptor whereas the effects of norepinephrine appear due to interactions with both α- and β-adrenergic receptors. The presence of the phosphodiesterase inhibitor, isobutylmethylxanthine, potentiates the effects of the catecholamines and reveals a histamine-mediated increase in cyclic AMP levels. After an initial stimulation of cyclic AMP formation with norepinephrine, followed by washing of the slices, the cyclic AMP-generating system is unresponsive to norepinephrine but does respond to an adenosine-norepinephrine combination. In mouse cerebral cortical slices, catecholamines appear to elicit an accumulation of cyclic AMP primarily via interaction with a β-adrenergic receptor.  相似文献   

16.
Adenosine is an inhibitory neuromodulator that exerts antiepileptic effects in the brain and the entorhinal cortex (EC) is an essential structure involved in temporal lobe epilepsy. Whereas microinjection of adenosine into the EC has been shown to exert powerful antiepileptic effects, the underlying cellular and molecular mechanisms in the EC have not been determined yet. We tested the hypothesis that adenosine-mediated modulation of synaptic transmission contributes to its antiepileptic effects in the EC. Our results demonstrate that adenosine reversibly inhibited glutamatergic transmission via activation of adenosine A1 receptors without effects on GABAergic transmission in layer III pyramidal neurons in the EC. Adenosine-induced depression of glutamatergic transmission was mediated by inhibiting presynaptic glutamate release probability and decreasing the number of readily releasable vesicles. Bath application of adenosine also reduced the frequency of the miniature EPSCs recorded in the presence of TTX suggesting that adenosine may interact with the exocytosis processes downstream of Ca2+ influx. Both Gαi/o proteins and the protein kinase A pathway were required for adenosine-induced depression of glutamatergic transmission. We further showed that bath application of picrotoxin to the EC slices induced stable epileptiform activity and bath application of adenosine dose-dependently inhibited the epileptiform activity in this seizure model. Adenosine-mediated depression of epileptiform activity was mediated by activation of adenosine A1 receptors and required the functions of Gαi/o proteins and protein kinase A pathway. Our results suggest that the depression of glutamatergic transmission induced by adenosine contributes to its antiepileptic effects in the EC.  相似文献   

17.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

18.
The adenosine-sensitive cyclic AMP phosphodiesterase of rat adipocytes was found to reside in the same subcellular fraction as the enzyme sensitive to insulin. There were several similarities between the action of adenosine and that of insulin on the enzyme. The action of adenosine on the phosphodiesterase is probably like that of insulin, both being receptor-mediated, although different sites or different receptors could be involved. Adenosine analogues with intact ribose but a modified purine moiety elicited a response similar to that of adenosine. Added Ca2+ was also not a requirement for the action of adenosine. The action of adenosine was not synergistic with that of insulin, neither was adenosine essential for insulin action. Insulin stimulated the enzyme even at low cell concentrations and in the presence of adenosine deaminase. Adenosine, however, enhanced the effect of insulin, but only at insulin concentrations that produced submaximal effects. Thus the mechanisms of action could be similar or related. The time-course effect of a suboptimal concentration of insulin was transitory, like that of adenosine, and was influenced by the presence of adenosine, whereas that of a maximally effective concentration of insulin was sustained for at least 20 min and was not affected by the presence of adenosine. Isoprenaline enhanced phosphodiesterase activity stimulated by optimal concentrations of either adenosine or insulin, suggesting that their effects were mediated through different mechanisms of action.  相似文献   

19.
Changes in parameters of spontaneous acetylcholine (ACh) quantal secretion caused by prolonged high-frequency burst activity of neuromuscular junctions and possible involvement of endogenous calcitonin gene-related peptide (CGRP) and its receptors in these changes were studied. With this purpose, miniature endplate potentials (MEPPs) were recorded using standard microelectrode technique in isolated neuromuscular preparations of m. EDL–n. peroneus after a prolonged high-frequency nerve stimulation (30 Hz for 2 min). An increase in the MEPP amplitudes and time course was observed in the postactivation period that reached maximum 20–30 min after nerve stimulation and progressively faded in the following 30 min of recording. Inhibition of vesicular ACh transporter with vesamicol (1 μM) fully prevented this “wave” of the MEPP enhancement. This indicates the presynaptic origin of the MEPP amplitude increase, possibly mediated via intensification of synaptic vesicle loading with ACh and subsequent increase of the quantal size. Competitive antagonist of the CGRP receptor, truncated peptide isoform CGRP8–37 (1 μM), had no effect on spontaneous secretion parameters by itself but was able to prevent the appearance of enhanced MEPPs in the postactivation period. This suggests the involvement of endogenous CGRP and its receptors in the observed MEPP enhancement after an intensive nerve stimulation. Ryanodine in high concentration (1 μM) that blocks ryanodine receptors and stored calcium release did not influence spontaneous ACh secretion but prevented the increase of the MEPP parameters in the postactivation period. Altogether, the data indicate that an intensive nerve stimulation, which activates neuromuscular junctions and muscle contractions, leads to a release of endogenous CGRP into synaptic cleft and this release strongly depends on the efflux of stored calcium. The released endogenous CGRP is able to exert an acute presynaptic effect on nerve terminals, which involves its specific receptor action and intracellular cascades leading to intensification of ACh loading into synaptic vesicles and an increase in the ACh quantal size.  相似文献   

20.
Effects of adenosine and pGlu-Glu-ProNH(2) (FPP) on the function and in vitro penetration of boar spermatozoa were examined. First, the effects of dibutyryl cAMP or agonists and antagonists of adenosine receptors (inhibitory adenosine receptors, A1AdR; stimulatory adenosine receptors, A2AdR) on freshly ejaculated spermatozoa were determined by chlortetracycline fluorescence assessment. Capacitation of spermatozoa was stimulated when they were cultured in a medium with dibutyryl cAMP, adenosine, A2AdR agonist, and adenosine plus A1AdR antagonist (CPT). However, acrosome reaction was inhibited only by adenosine. A1AdR agonist did not affect intact spermatozoa. A2AdR antagonist (DMPX) neutralized all of the effects of adenosine. Second, interaction of adenosine and FPP was examined. Gln-FPP, a competitive inhibitor of FPP, and DMPX inhibited the effects of adenosine and FPP, and CPT neutralized the inhibitory effect of FPP on acrosome reaction. Last, the effects of adenosine, FPP, and caffeine on the rate of sperm penetration were examined using frozen-thawed spermatozoa. Adenosine, FPP, and caffeine significantly enhanced the rate of sperm penetration as compared with the case of no additions. Caffeine treatment resulted in a high rate of polyspermic fertilization. In contrast, adenosine and FPP treatments resulted in an increased proportion of normal fertilization in in vitro-matured oocytes. These results suggest that boar spermatozoa can be modulated by the adenylyl cyclase/cAMP pathway via A2AdR in intact cells to induce capacitation and A1AdR in capacitated cells to inhibit spontaneous acrosome loss and that FPP receptors interact with A2AdR in intact cells and with A1AdR in capacitated cells. Furthermore, adenosine and FPP seem to be useful in reducing the incidence of polyspermic penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号