首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of microtubule disruption on the development and maintenance of cell polarity was studied in rat hepatocytes cultured as primary monolayers in the presence of colchicine or nocodazole. Addition of colchicine immediately after plating did not inhibit the generation of bile canaliculi (the apical pole) after 1 day of culture, as judged by electron microscopic examination, and did not allow penetration of Ruthenium Red through the tight junctions. However, the bile canaliculi developed in the presence of colchicine or nocodazole were not fully normal since they were not able to concentrate fluorescein diacetate in their lumina, and did not enrich with proteins of the apical plasma membrane domain, as control cells did. When the drugs were added after 1 or 2 days of culture, the new bile canaliculi appeared to be unaffected when examined by electron microscopy, but many of them did not concentrate fluorescein and were not enriched with apical membrane proteins within 4 to 24 h after drug addition. Whenever the drugs were added, the proteins that would normally concentrate on the membrane of the bile canaliculi accumulated intracellularly in endocytic vesicles after 2 to 4 h of drug treatment, and in vacuoles resembling lysosomes when the drugs were maintained for 24 h or more. These results show that microtubule disruption does not inhibit the structural reconstitution of bile canaliculi, but impairs their normal function and the transport of proteins of the apical plasma membrane domain.  相似文献   

2.
In an effort to reconstruct the cellular polarity normally found in the liver, adult rat hepatocytes were sandwiched between two layers of hydrated rat tail tendon collagen matrix. Functionally, sandwiched hepatocytes maintained the secretion of albumin, transferrin, fibrinogen, bile acids, and urea for at least 6 weeks, whereas cells cultured on a single layer of collagen gel ceased such secretion in 1-2 weeks. After 1 week of culture on a single layer of collagen gel, hepatocytes could still recover these lost functions when a second layer of collagen gel was applied. The exact nature of the substrate for constructing the sandwich system appeared to be unimportant as long as it allowed cellular attachment. Hepatocytes cultured in the sandwich system appeared to maintain a distribution of actin filaments similar to the in vivo state, whereas cells cultured on a single layer of collagen gel showed abnormal formation of stress fibers. These studies suggest that simple manipulations of the configuration of extracellular elements can dramatically alter the behavior of cultured hepatocytes.  相似文献   

3.
Summary The AgB10 antigen of bile canaliculi of the mouse hepatocyte was identified using monoclonal antibodies. The Mr value of 116000 for AgB10 was measured by immunoblotting. The tissue localization of AgB10 was studied by light and electron microscopy using the immunoperoxidase technique. AgB10 was predominantly present on the microvillus membrane of bile canaliculi, the brush border of intestinal mucosa and apical surfaces of the epithelial cells in some other organs. A small amount of AgB10 was detected on the basolateral domain of the hepatocytes. AgB10 was specific for hepatocytes and was not found in the other cell types of the liver. In primary hepatocyte culture, AgB10 was localized on the surface of cells during the first 24 h, predominantly at the sites of cell-cell and cell-substratum contacts. After 48 h of culture AgB10 gradually disappeared from contracting cell surfaces and became concentrated only in the reconstituted bile canaliculi.  相似文献   

4.
The AgB10 antigen of bile canaliculi of the mouse hepatocyte was identified using monoclonal antibodies. The Mr value of 116000 for AgB10 was measured by immunoblotting. The tissue localization of AgB10 was studied by light and electron microscopy using the immunoperoxidase technique. AgB10 was predominantly present on the microvillus membrane of bile canaliculi, the brush border of intestinal mucosa and apical surfaces of the epithelial cells in some other organs. A small amount of AgB10 was detected on the basolateral domain of the hepatocytes. AgB10 was specific for hepatocytes and was not found in the other cell types of the liver. In primary hepatocyte culture, AgB10 was localized on the surface of cells during the first 24 h, predominantly at the sites of cell-cell and cell-substratum contacts. After 48 h of culture AgB10 gradually disappeared from contacting cell surfaces and became concentrated only in the reconstituted bile canaliculi.  相似文献   

5.
Few in vitro models expressing complex hepatocyte polarity are available. We used the unpolarized rat Fao cell line to isolate the polarized WIF-B line. These complex rat-human hybrid cells form functional simple bile canaliculi. To obtain Fao-derived polarized models with a simpler chromosome content and developed bile canaliculi, we employed two approaches. Partial success was achieved with monochromosomal hybrids. As shown by the immunolocalization of apical, basolateral, and tight-junctional proteins, monochromosomal hybrid 11-3 cells were polarized. They formed simple functional bile canaliculi and transiently expressed the typical polarity of simple epithelial cells. One subclone blocked in this polarity state was isolated. A more robust approach was provided by spheroid culture, a three-dimensional system that strengthens cell-cell contacts. Transient spheroid culture induced irreversible polarization of Fao cells. This induction occurred in most spheroids (approximately 1% of the cells). From populations enriched in stably polarized cells, we generated new polarized cell models, designated Can. Can 3-1 cells formed simple functional bile canaliculi when plated at high density. Regardless of plating density, Can 9 and Can 10 cells formed long tubular branched canaliculi competent for vectorial transport of organic anions and bile acids, and involving several dozen adjacent cells. Thus, we have generated new cell models stably expressing typical hepatocyte polarity. Among these models, Can 9 and Can 10 are the first capable of forming functional, highly developed bile canaliculi similar to those formed in vivo. This work was supported by grants from the Association pour la Recherche sur le Cancer (no.6551), the Institut Curie (PIC Signalisation Cellulaire, no. 914) and the Institut National de la Santé et de la Recherche Médicale (contract PRISME 98-09).  相似文献   

6.
The development of an organized network of bile canaliculi is essential for the normal functioning of the liver. We have characterized bile canaliculus development in situ from Days 3-19 and in vitro in cultured hepatocyte monolayers using electron microscopical and immunofluorescent staining with antibodies that specifically recognize antigens of the bile canaliculus. Although the liver first forms as a discrete epithelial bud of endodermal tissue at stage 12-14 (45-53 h after laying), canaliculi were first detected by our antibodies at low levels in 4-day embryos and at high levels in stage 27 (5 days after laying) and later embryos. During Days 4, 5, and 6 the canaliculi near the periphery of the rudiment do not stain while canaliculi in central areas, closer to the gut, are strongly stained. During this transition period the ultrastructure of the canaliculi in the peripheral regions is also less developed than the central canaliculi where the antigens appear. By 7 days post laying, canaliculi throughout the entire liver rudiment express the marker antigens equally and have the ultrastructural characteristics of mature, functional canaliculi. Cells prepared from liver of embryos of 11 days incubation and grown in monolayer culture reformed discernible canalicular specializations, as determined by immunofluorescent staining and electron microscopy, but only transiently (for 1 to 3 days after plating). Not all of the antigens were expressed or polarized in these cultures. The capacity of the embryonic parenchymal cells to develop and maintain polarity appears to depend on factors possibly including age-dependent changes in the cells themselves, interactions with other cell types or extracellular matrix, or the shape of the cells.  相似文献   

7.
Primary monolayer cultures were obtained in 60-mm petri dishes by incubating 3 X 10(6) isolated hepatocytes at 37 degrees C in Dulbecco's medium supplemented with 17% fetal calf serum. The ultrastructure of monolayer cells was examined after various incubation periods. Within 4 h of plating, the isolated spherical cells adhere to the plastic surface, establish their first contacts by numerous intertwined microvilli, and form new hemidesmosomes. After 12 h of culture, wide branched trabeculae of flattened polyhedral cells extend in all directions. Finally, after 24 h of culture, bile canaliculi are reconstituted, and a biliary polarity is recovered: the Golgi elements, which are scattered throughout the cytoplasm in the isolated cells, are reassembled in front of the newly formed bile canalculi, symmetrically in the adjacent cells; lysosomes are concentrated in that region, and microtubules reappear. Concomitantly, plasma membrane differentiations, namely desmosomes and tight junctions, develop. Tight junctions sealing the bile ducts constitute a barrier to the passage of ruthenium red and horseradish peroxidase. De novo formation of these junctions was studied by the freeze-etching technique: 10-nm particles compose a network of anastomosed linear arrays in the vicinity of the bile canaliculi; in the next step of differentiation, the particles fuse, form short ridge segments and finally continuous branched smooth strands, characteristic of the mature tight junction.  相似文献   

8.
The reaggregation of adult rat liver cells maintained in vitro   总被引:2,自引:0,他引:2  
The reaggregation of dissociated adult rat liver cells maintained in vitro for up to 96 h is described. Cultures were examined by dark-ground fluorescence and electron microscopy. Spaces resembling bile canaliculi were formed between reaggregated hepatocytes. Desmosomes and ‘tight’ junctions were formed between hepatocytes but ‘gap’ junctions were not detected. In older cultures structural damage was observed in many hepatocytes and some of them ingested cell debris by phagocytosis. Structures resembling bile ducts and sinusoids were also formed but complex association between all three types of cell aggregate was not observed.  相似文献   

9.
Adult rat hepatocytes were cultured for 15 days on type I collagen-coated permeable membranes in a hormonally defined Waxman's modified medium supplemented with very low concentrations of insulin, glucagon and dexamethasone. Phase contrast examination showed that 15-day-old cultures still formed a regular monolayer of polygonal cells. In similarly aged cultures, intracellular glycogen was abundant and evenly distributed, while steatosis remained very limited. Scanning and transmission electron microscopy showed that well developed bile canaliculi could be observed on the lateral side of the hepatocyte membrane after 4 days of incubation and persisted for 2 weeks. These canalicular structures probably originated from coalescence of membrane invaginations observed in 1-day-old cultures. Transmission electron microscopy showed that the ultrastructure of the cells was very close to that of normal rat hepatocytes in the intact liver. These results suggest that rat hepatocytes cultured under these experimental conditions are able to develop and maintain tissue-specific cytochemical and morphological properties for at least 15 days.  相似文献   

10.
In this study, we established rat primary hepatocyte sandwich cultures on oxygen-permeable membranes and investigated the change in their repolarization. Functional bile canaliculi in sandwich-cultured hepatocytes on oxygen-permeable polydimethylsiloxane (PDMS) membranes were re-established more quickly than those in a conventional sandwich culture on polystyrene (PS). This enhanced biliary excretory activity was also observed in hepatocytes on another oxygen-permeable membrane plate but not on a PDMS surface whose oxygen permeability is blocked. An apical efflux transporter protein, Mrp2, was more rapidly distributed in hepatocytes cultured on PDMS membranes than in hepatocytes cultured on conventional PS plates. Moreover, the area of distribution of the Mrp2 in polarized hepatocytes cultured on PDMS membranes was more widespread than that for the hepatocytes grown on sandwich-cultured PS plates. The observation of ultrastructure in transmission electron microscopy clearly confirmed the presence of bile canalicular lumens possessing microvilli and tight junctions. Additionally, we demonstrated that the 7-ethoxyresorufin-O-deethylation activity of hepatocytes on PDMS membranes was also improved as compared to those on a PS surface. Therefore, sandwich-cultured hepatocytes on oxygen-permeable substrates can provide a simple tool for predicting the hepatic metabolism and toxicity of xenobiotics in vivo with short span and low cost in the course of drug discovery and evaluation.  相似文献   

11.
The morphogenesis and movement of bile canaliculi (BC) are not well understood. This is because culture of hepatocytes that maintain polarity of cell membranes and possess highly differentiated functions has never been successful. We found that small hepatocytes (SHs), which are known to be hepatic progenitor cells, could proliferate and differentiate into mature hepatocytes and that BC-like structures developed between rising/piled-up cells. We investigated how BC-like structures developed with maturation of SHs and whether the structures were functionally active as BC. Hepatic cells, including SHs, were isolated from an adult rat liver and cultured. Immunocytochemistry and immunoblotting for BC proteins, such as ectoATPase, 5'-nucleotidase, dipeptidylpeptidase IV, and multidrug-resistance associated protein 2, were examined and time-lapse microscopy was used for the observation of BC contractions. Secretion of bilirubin into the reconstructed BC was also observed. The results of immunocytochemistry, immunoblots, and immunoelectron micrographs revealed that BC proteins were localized in the intercellular space that coincided with BC-like structures reconstructed between rising/piled-up cells. Tight junction-associated protein ZO-1 was also expressed along the BC-like structures. Bilirubin added to the medium were secreted into BC-like structure and accumulated without leakage. Time-lapse microscopy showed continuous contractions of reconstructed BC. In conclusion, BC-like structures reconstructed by SHs may be functional with membrane polarity, secretory ability, and motility. These results show that this culture system may suitable for investigating the mechanism of the formation of BC and their functions.  相似文献   

12.
A few hours after plating, isolated rat hepatocytes reassociate into clusters and differentiate intercellular cavities bordered by junctional complexes. These structures show a great resemblance to bile canaliculi seen in vivo. Intracellular lumens surrounded by microvilli are observed in the cytoplasm of some cultured hepatocytes. The formation of these structures, which contain an osmiophilic substance, probably results from modifications in the functioning of the secretory apparatus. It can be speculated that these intracellular lumens may contribute to the formation of new canaliculi differentiated between reassociated cells.  相似文献   

13.
Summary Isolated rat hepatocytes maintained in primary culture on gas permeable membrane for 20 h form monolayers and establish at their cell borders a network of canaliculi (approximate diameter 3.5 μm). In the presence of the known choleretic bile acid dehydrocholate, dilation of canaliculi occurs. When nonfluorescent carboxyfluorescein diacetate ester is added to the culture medium, fluorescent carboxyfluorescein appears in the intracanalicular space. In the dilated state, fluid containing the fluorescent compound could be collected from the canaliculi by puncture with a micropipette. The intracanalicular space shows a negative electrical potential difference of 31 mV in reference to the bath solution and is 13.5 mV more positive with reference to recordings from the cytosol of cultured rat hepatocytes. Cultured rat hepatocytes grown on gas permeable membrane are energetically stable over 3 d. On Day 4, ATP levels increase markedly, whereas Na+−K+-ATPase activity declines. Ionic composition of hepatocytes, as measured by electronprobe element analysis on cryosection samples, does not change markedly during monolayer formation. With formation of bile canaliculi, the activity of alkaline phosphatase rapidly increases within 24 h and is stable for the next 3 d. Within that time the activity of γ-glutamyltranspeptidase, however, increases steadily, reaching a 1.6-fold higher activity than freshly isolated hepatocytes. Bile acids appear in the culture supernatant after 1 d. When unconjugated [14C]cholic acid is added to the cultures the supernatant contains also [14C]tauro- and [14C]glycocholic acid, indicating the preservation of conjugation capacity in these cultures. Total bile acid concentrations in the supernatant increase from 5 to 26 μM on Day 4. The cultures do not secrete α-fetoprotein. Monolayer cultures of hepatocytes in the presence of choleretic bile acids seem to be a suitable model system to collect and to analyze the composition of primary bile. In conjunction with the electrical parameters, it is possible to describe directly properties of bile secretion at the canalicular pole of the intact hepatocyte. This work was supported by the Deutsche Forschungsgemeinschaft, grant no. PE 250/5-1.  相似文献   

14.
Summary Hepatocytes prepared from rats at various perinatal stages were cultured in selective medium that does not allow fibroblastic cell growth. Cell population remained homogeneous during the culture. Hepatocytes undergo divisions for a period, which varies according to the stage of development of the rat. Light and electron microscope observations showed the presence of numerous cytoplasmic organelles; moreover, hydrocortisone-induced structures similar to bile canaliculi. Chromatin protein kinase decreased rapidly during culture except in samples prepared from 17-day fetuses in which it remained unchanged for 2 days and decreased to a lesser extent afterwards. Chromatin nonhistone proteins were incubated with (γ-32P) ATP and the phosphorylation pattern analyzed on polyacrylamide gels. Many radioactive peaks were observed in chromatin proteins from 17-day fetuses; they were much lower in proteins from 19-day fetuses. The phosphorylation pattern was analyzed in hepatocytes after 2 days of culture. Many radioactive peaks were observed with proteins from heapatocytes taken from 17-day fetuses; no radioactivity was observed in proteins from 19-day fetuses. This is in contrast with the absence of radioactive peaks in chromatin proteins from adult rat hepatocytes. In cytoplasm, aldolase and pyruvate kinase specific activities varied according to the age of the rat. They strongly decreased during culture except in hepatocytes from 15-and 17-day fetuses, in which they remained stable for at least 5 days. The stability of chromatin and cytoplasmic enzymes in hepatocytes from 17-day fetuses could result from their ability to be regulated by hormones that are secreted at this stage of development.  相似文献   

15.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

16.
Bile acid synthesis in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Normal adult rat hepatocytes were incubated for 48h and the concentration of total and individual bile acids in homogenized samples of the culture was measured at intervals during the incubation, using radiogas chromatography and isotope derivative assay. The net increase in bile acids over the value observed at the start of the culture was taken as synthesis. The results showed that bile acid synthesis was linear up to 24h of incubation, at a rate of 20nmol/g hepatocytes per hour, and that 85% of the newly synthesized bile acid was cholic acid. The bile acid synthesized was mainly conjugated with taurine. These results suggest that isolated hepatocytes cultured in the way described could be a useful in vitro model for the study of bile acid synthesis.  相似文献   

17.
When cultured together in a primary serum-free hormone-free system, hepatocytes and exocrine pancreas cells from the carp, Cyprinus carpio, spontaneously establish unique morphological structures that do not occur in vivo. These structures include intercellular bile canaliculi between neighbouring hepatocytes and hybrid canaliculi between hepatocytes and pancreas cells. In vivo, carp hepatocytes form only unicellular bile canaliculi; hybrid canaliculi between hepatocytes and exocrine pancreas cells do not exist at all in nature. This study shows that, in an artificial environment, cells are able spontaneously to establish novel morphological structures that are absent in the animal from which the cells have been obtained. Received: 3 January 1996 / Accepted: 17 March 1997  相似文献   

18.
A procedure is described for maintaining primary cultures of adult rat hepatocytes for prolonged periods of time on layer of irradiated mouse fibroblast cell line (C3H/1OT1/2) and on a secondary lung fibroblasts obtained from Sprague Dawley rats. Morphologically and ultrastructurally the cocultivated hepatocytes retained many characteristics of hepatocytes in vivo. Within 24 hours after seeding, the individual cells were attached on the feeder cell layer and the in vivo polarity of the liver cells reappeared. Electron microscope studies demonstrated the appearance of newly developed bile ducts and junctions between hepatocytes as well as between hepatocytes and feeder cells. Histochemically, these cells were positive for glucose-6-phosphatase and for glycogen. After 14 days in culture the hepatocytes could be reseeded onto fresh C3H1OT1/2 cells. In contrast, hepatocytes maintained on plastic substrate lost their glycogen content and the epithelial character of the liver cells after 5 days in culture, and by day 10 this culture became predominantly fibroblastic. It is suggested that hepatocytes maintained on an irradiated fibroblast feeder layer provide a valuable approach for studying the morphogenesis, cytotoxicity, or the metabolism of different chemicals in vitro.  相似文献   

19.
Rat hepatocytes were cultured initially as spheroids on culture plates and then transferred into a rotating wall vessel (high-aspect ratio vessel [HARV]) for further culturing. Morphological evaluation based on electron microscopy showed that hepatocyte spheroids cultured for 30 d in the HARV had a compact structure with tight cell-cell junctions, numerous smooth and rough endoplasmic reticulum, intact mitochondria, and bile canaliculi lined with microvilli. The viability and differentiated properties of the hepatocytes cultured in the HARV were further substantiated by the presence of both phase I oxidation and phase II conjugation drug-metabolizing enzyme activities, as well as albumin synthesis. Homogenates prepared from freshly isolated hepatocytes and hepatocytes cultured in the HARV showed similar cytochrome P450 2B activities measured as pentoxyresorufin-O-dealkylase and testosterone 16beta-hydroxylase. Further, intact hepatocytes cultured in the HARV were found to metabolize chlorzoxazone to 6-hydroxychlorzoxazone; dextromethorphan to dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan; midazolam to 1-hydroxymidazolam and 4-hydroxymidazolam; and 7-hydroxycoumarin to its glucuronide and sulfate conjugates. In conclusion, we found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term (1 mo) maintenance of viability and cellular function.  相似文献   

20.
Freshly harvested primary rat hepatocytes cultivated as multicellular aggregates, or spheroids, have been observed to exhibit enhanced liver-specific function and differentiated morphology compared to cells cultured as monolayers. An efficient method of forming spheroids in spinner vessels is described. Within 24 h after inoculation, greater than 80% of inoculated cells formed spheroids. This efficiency was significantly greater than that reported previously for formation in stationary petri dishes. With a high specific oxygen uptake rate of 2.0 x 10(-9) mmol O(2)/cell/h, the oxygen supply is critical and should be monitored for successful formation. Throughout a 6-day culture period, spheroids assembled in spinner cultures maintained a high viability and produced albumin and urea at constant rates. Transmission electron microscopy indicated extensive cell-cell contacts and tight junctions between cells within spheroids. Microvilli-lined bile canaliculus-like channels were observed in the interior of spheroids and appeared to access the exterior through pores at the outer surface. Spheroids from spinner cultures exhibited at least the level of liver-specific activity as well as similar morphology and ultrastructure compared to spheroids formed in stationary petri dishes. Hepatocytes cultured as spheroids are potentially useful three-dimensional cell systems for application in a bioartificial liver device and for studying xenobiotic drug metabolism. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号