首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

2.
Aimoto S 《Biopolymers》1999,51(4):247-265
A novel method for polypeptide synthesis, in which partially protected peptide thioesters are used as building blocks, has been developed. Partially protected peptide thioesters are easily prepared by solid-phase methodology. The thioester moiety is converted to an active ester in the presence of a silver compound such as AgNO(3) or AgCl and an active ester component such as 1-hydroxybenzotriazole or 3,4-dihydro-3-hydro-4-oxo-1,2, 3-benzotriazine. Segment condensation can be accomplished using partially protected peptide segments. The consecutive condensation of the partially protected peptide segments is realized by the selective removal of the 9-flourenylmethoxycarbonyl group, for terminal amino protection, after segment condensation has been achieved. In this method, large peptide segments can easily be used. Thus, the products obtained by the thioester method can be separated from by-products by reverse phase high performance liquid chromatography, even when no purification process was performed during the prior segment condensation procedures. This indicates that proteins that have no specific features such as enzymatic or biological activities can be obtained after isolation, solely based on their chromatographic profiles. Thus, the thioester method will provide a new basis for protein studies including phosphorylated and glycosylated polypeptides.  相似文献   

3.
Aza‐peptides have been used as tools for studying SARs in programs aimed at drug discovery and chemical biology. Protected aza‐dipeptides were synthesized by a solution‐phase submonomer approach featuring alkylation of N‐terminal benzophenone semicarbazone aza‐Gly‐Xaa dipeptides using different alkyl halides in the presence of potassium tert‐butoxide as base. Benzophenone protected aza‐dipeptide tert‐butyl ester 31c was selectively deprotected at the C‐terminal ester or N‐terminal hydrazone to afford, respectively, aza‐dipeptide acid and amine building blocks 36c and 40c, which were introduced into longer aza‐peptides. Alternatively, removal of the benzophenone semicarbazone protection from aza‐dipeptide methyl esters 29a–c led to intramolecular cyclization to produce aza‐DKPs 39a–c. In light of the importance of aza‐peptides and DKPs as therapeutic agents and probes of biological processes, this diversity‐oriented solution‐phase approach may provide useful tools for studying peptide science. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
A cost-effective synthetic strategy has been used for the selective protection of the exocyclic amino function of purine nucleosides. Instead of using the common protecting groups in their chloride or anhydride forms, the less expensive and nontoxic acidic form was chosen. The acids were first activated to an active ester form using DCC and further successfully used for N-acylation of purine nucleosides. The contamination of the N-acylated product with DCU was inconvenient and was avoided by use of polymer supported-carbodiimide that has the additional advantage of reusability.  相似文献   

5.
The effect of combination of the hydrophilic aza-Gly substitution (NHNHCO) at position 10 with hydrophobic, unnatural D-amino acids in position 6 on the potency of luteinizing hormone-releasing hormone (LH-RH) analogues has been investigated. Previously the aza-Gly residue was shown to provide protection from enzymatic cleavage and lead to potency increases in a less hydrophobic series. The compounds were prepared by coupling of the corresponding nonapeptide acids with semicarbazide hydrochloride by the N,N'-dicyclohexylcarbodiimide/1-hydroxybenzotriazole procedure. The required nonapeptide acids were prepared by the solid phase method on chloromethyl-polystyrene resin using HF/anisole deprotection. The products were purified by preparative reversed-phase high-performance liquid chromatography. The analogues were tested in a rat estrous cyclicity suppression assay designed to show the paradoxical antifertility effects of these compounds. The potencies of [6-(3-benzimidazol-2-yl)-D-alanine), 10-aza-glycine] LH-RH and [6-(3-(5,6-dimethylbenzimidazol-2-yl)-D-alanine), 10-aza-glycine] LH-RH are 40 and 190 times that of LH-RH respectively. The most active compound in this series is [6-(3-(2-naphthyl)-D-alanine), 10-aza-glycine] LH-RH with a potency 230 times that of LH-RH. This compound is 2.3 times as potent as the standard ([D-Trp6, Pro9-NHEt] LH-RH) and appears to be the most potent LH-RH agonist reported.  相似文献   

6.
The non-codable amino acid O-amino-serine, Ams, has been prepared in both L- and D-forms as the orthogonally protected derivative, Fmoc-Ams(Boc)-OH (1 and 2). This new amino acid derivative is useful for chemoselective ligations. Under acidic conditions and in the presence of all other common amino acid functionalities, the oxyamine function selectively forms oxime linkages with aldehydes. The Ams residue has been incorporated into both ends of the peptide sequence Asp-Leu-Trp-Gln-Lys using standard SPPS. The deprotected peptide has been used for chemical ligation to afford a peptide dimer as well as a glycopeptide. Ams racemization was found to be negligible, as monitored by HPLC separation of Ams dipeptide diastereomers.  相似文献   

7.
To investigate side reactions during the activation of side chain unprotected asparagine in Fmoc-solid phase peptide synthesis the peptide Met-Lys-Asn-Val-Pro-Glu-Pro-Ser was synthesized using different coupling conditions for introduction of the asparagine residue. Asparagine was activated by DCC/HOBt, BOP (Castro's reagent) or introduced as the pentafluorophenyl ester. The resulting peptide products were analyzed by HPLC, mass spectrometry and Edman degradation. In the crude products varying amounts of beta-cyano alanine were found, which had been formed by dehydration of the side chain amide during carboxyl activation of Fmoc-asparagine. A homogeneous peptide was obtained by using either side chain protected asparagine derivatives with BOP mediated activation or by coupling of Fmoc-Asn-OPfp. Fmoc-Asn(Mbh)-OH and Fmoc-Asn(Tmob)-OH were coupled rapidly and without side reactions with BOP. For the side chain protected derivatives the coupling was as fast as that of other Fmoc-amino acid derivatives, whereas couplings of Fmoc-Asn-OH proceed more slowly. However, during acidolytic cleavage both protection groups, Mbh and Tmob, generate carbonium ions which readily alkylate tryptophan residues in a peptide. Tryptophan modification was examined using the model peptide Asn-Trp-Asn-Val-Pro-Glu-Pro-Ser. Alkylation could be reduced by addition of scavengers to the TFA during cleavage and side chain deprotection. A homogeneous peptide containing both, asparagine and tryptophan, was obtained only by coupling of Fmoc-Asn-OPfp.  相似文献   

8.
For the first time, papain-catalysed synthesis of peptide bonds was successfully carried out using free amino acids as nucleophiles. In kinetically controlled experiments employing pH-Stat-mode, the ester substrates Z-Ala-OMe and Z-Gly-OMe were coupled with alanine, glutamine, and Cys(Acm)-OH, respectively. Under optimized reaction conditions (pH 9.2, high ratio nucleophile/carboxyl component, 10 mumol substrate mg-1 papain), the peptide yields ranged from 17% to 79%, depending on the structure of the amino and/or carboxyl component. The peptides formed were not hydrolysed under the chosen reaction conditions. With Z-Gly-OMe as the ester substrate, formation of the dipeptide was both rapid and high yielding. Papain-catalysed formation of peptide bonds applying free amino acids as nucleophiles might serve as an economic and easily manageable approach for the synthesis of short-chain peptides to be used in clinical nutrition.  相似文献   

9.
F H Tsai  C G Overberger  R Zand 《Biopolymers》1990,30(11-12):1039-1049
The role of the amino acid proline in influencing the secondary and tertiary structure of proteins and polypeptides has been an area of active study for many years. We have investigated this problem by incorporating the four-membered ring amino acid, azetidine-2-carboxylic acid, into some proline polypeptides. An adjunct to the synthesis of the peptides was the synthesis of azetidine-2-carboxylic acid and its resolution. We developed an improved synthesis of N-benzhydryl-2-carbobenzyloxy azetidine, an essential intermediate required for the synthesis of L-azetidine-2-carboxylic acid. This amino acid was subsequently obtained via the partial hydrogenation of the N-benzhydryl compound, under mild conditions. Our ability to isolate the intermediate N-benzhydryl-2-carboxylic acid demonstrated that the rate of cleavage of the O-benzyl ester group in this molecule is faster than the cleavage of the N-benzhydryl group. The tetrapeptides, Boc-(L-Pro)3-L-Aze-Opcp, and Boc-(L-Aze-L-Pro)2-Opcp (Boc: t-butoxycarbonyl; Pro: proline; Aze: azetidine-2-carboxyl acid; Opcp: pentachlorophenyl), were prepared using traditional solution peptide synthesis. They were characterized by direct chemical ionization-mass spectrometry, CD spectra, and 13C- and 1H-nmr spectroscopy. The assessment of the secondary structure of the two peptides using the methods noted above has led us to conclude that the compound Boc-(L-Aze-L-Pro)2-Opcp, in trifluoroethanol, has an all-cis peptide bond conformation with phi and psi torsion angles compatible with a left-handed helix. The secondary structure assessment of the peptide Boc-(L-Pro)3-L-Aze-Opcp, in chloroform or trifluoroethanol, leads to an assignment of both cis and trans peptide bonds as being present in the peptide. We have interpreted this latter finding as indicating that the introduction of the azetidine group into a peptide containing three consecutive proline residues in a linear sequence perturbs the normal proline peptide secondary structure in this tetrapeptide.  相似文献   

10.
The degree of racemization in the several activated ester methods of the peptide synthesis was measured in using the critical racemization test, Pro-Val+Pro, with help of gas chromatography. The results were compared with that in the coupling reaction, Leu-Phe+Val, in which no racemization had been reported in the corresponding reaction conditions by F. Weygand et al., when the activated dipeptide esters had been prepared from Z-Leu+Phe-activated esters. The significantly higher racemization was observed in the methods of N-hydroxypiperidine ester and thiophenyl ester, even when the activated dipeptide esters were prepared from Z-Pro+Val-activated esters. On the other hand, almost no racemization was observed in the N-hydroxysuccinimide ester and p-nitrophenyl ester methods. A great extent of the racemization was detected when the activated dipeptide esters were prepared directly from Z-Pro-Val-OH.  相似文献   

11.
The substrate specificities of alpha-chymotrypsin and subtilisins for peptide synthesis in hydrophilic organic solvents were investigated. Chymotrypsin exhibited high specificity to aromatic amino acids as acyl donors, while subtilisin Carlsberg and subtilisin BPN' were specific to aromatic and neutral aliphatic amino acids, in accordance with the S1 specificities of the enzymes for peptide hydrolysis in aqueous solutions. On the contrary, chymotrypsin exhibited higher specificities to hydrophilic amino acid amides as acyl acceptors (nucleophiles) for peptide synthesis with N-acetyl-L-tyrosine ethyl ester, in contrast to the S1' specificity for peptide hydrolysis and peptide synthesis in aqueous solutions. Furthermore, nucleophile specificity changed with the change in water-organic solvent composition; the increase in water content led to increase in relative reactivity of leucinamide to that of alaninamide. It was also found that protection of the carboxyl group of alanine by amidation is much preferable to protection by esterification in terms of reactivity as nucleophiles.  相似文献   

12.
The peptide synthesis from N-acetyl-L-phenylalanine ethyl ester with alaninamide catalyzed by a surfactant-protease complex has been performed in anhydrous hydrophilic organic solvents. Proteases derived from various sources were converted to surfactant-coated complexes with a nonionic surfactant. The surfactant-subtilisin Carlsberg (STC) complex had a higher enzymatic activity than the other protease complexes and the initial reaction rate in tert-amyl alcohol was 26-fold that of STC lyophilized from an optimum aqueous buffer solution. Native STC hardly catalyzed the same reaction. The addition of water to the reaction medium activated the lyophilized STC, however, the reaction rate was much lower than that of the STC complex, and a hydrolysis reaction preferentially proceeded. The STC complex exhibited a high catalytic activity in hydrophilic organic solvents (e.g. tertiary alcohol). The addition of dimethylformamide as a cosolvent improved the solubility of amino acid amides and further activated the STC complex due to the water mimicking effect. When hydrophilic amino acid amides were employed as an acyl acceptor, the peptide formation proceeded efficiently compared to that using hydrophobic substrates. The surfactant-STC complex is a powerful biocatalyst for peptide synthesis because the STC complexes display a high catalytic activity in anhydrous hydrophilic organic solvents and did not require the excess amount of water. Thus the side (hydrolysis) reaction is effectively suppressed and the yield in the dipeptide formation is considerably high.  相似文献   

13.
Hydrazone formation and similar reactions are highly versatile and specific, but their application to biological systems has been limited by their characteristically slow reaction kinetics at neutral pH. Catalysis of these reactions through imine formation with aromatic amines such as aniline has broadened the applicability of these reactions to biomolecular labeling. High concentrations of the catalyst are necessary, which may be incompatible with the native structure of certain proteins. In this study, we investigated the utility of 4-aminophenylalanine (4a-Phe) as a catalyst for these reactions. We find that 4a-Phe is nearly as effective as aniline in catalyzing hydrazone formation between the reactive amino acid 3-formyltyrosine (3f-Tyr) and hydrazine-containing fluorophores, both free in solution and incorporated into the protein tubulin. The catalyst 4a-Phe maintains ~70% of the catalytic efficacy of aniline and is less detrimental to the native structure of tubulin. Examination of the temperature dependence of imine formation between 3f-Tyr and 4a-Phe shows an increase in imine concentration accompanying a decrease in temperature, confirming the exothermic nature of the equilibrium reaction. Interestingly, decreasing the temperature of the 4a-Phe-catalyzed hydrazone reaction between 3f-Tyr and the fluorophore 7-hydrazinyl-4-methylcoumarin increases the overall rate of the reaction. This result indicates that the temperature dependence of the catalyst-aldehyde equilibrium is greater than the temperature dependence of the rate constant for hydrazone formation from this intermediate, and that the rate of hydrazone formation a direct function of the concentration of the intermediate imine. These results provide a platform for conducting nucleophilic catalysis under conditions that are more compatible with biomolecular targets than previously demonstrated, thereby expanding the utility of hydrazone ligations in biological systems.  相似文献   

14.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.  相似文献   

16.
A promising application of the depsipeptide technique has recently been proposed to provide ideal conditions for segment condensation, in that coupling of peptides bearing a C-terminal depsipeptide unit occurs without giving rise to epimerization at the activated amino acid. This is due to the low tendency of the activated depsipeptide units, in contrast to the corresponding peptide segments, to form optically labile oxazolones. In this work we demonstrate that coupling of depsipeptides via base-assisted activation using HBTU occurs not only without loss of configuration, but even much faster than the coupling of the corresponding all-amide segments. Nevertheless, when the coupling of long depsipeptide segments proceeds slowly, we uncovered the occurrence of beta-elimination at the activated depsipeptide unit, in an extent dependent on the presence of base in the system and on the type of the solvent. Beta-elimination was completely suppressed by using carbodiimide/HOBt activation in a non-polar solvent (DCM), and in more polar media it was limited by substituting TMP for DIEA during HBTU activation, or using particular solvent mixtures (such as DMSO/toluene) for activation via carbodiimide. Finally, we show the application of C-terminal pseudoprolines, in comparison with that of depsipeptide units, to segment coupling.  相似文献   

17.
A set of azapeptides was designed based on the Ala-Val-Pro-Ile peptide (derived from Smac protein) to activate caspase-9 and induce apoptosis in breast cancer cells. The diversity-oriented synthesis of the aza-peptides 59 was accomplished by alkylation of the aza-residue of aza-Gly-Pro dipeptide 15 using potassium tert-butoxide and a range of different alkyl halides. The resulting protected aza-dipeptide building blocks were then introduced into mimics 59 using standard coupling conditions. Biological evaluation of 59 was performed in MDA-MB-231 breast cancer cells, and indicated that the aza-Gly and aza-Phe analogs 5 and 7 were most efficient in inducing cell death by a caspase-9 mediated apoptotic pathway. Revealing a relationship between azabicycloalkanone and aza peptide mimics, novel AVPI mimics were synthesized which exhibit utility for studying structure–activity relationships to develop leads for activating apoptosis in cancer cells.  相似文献   

18.
A new method was developed for the synthesis of peptide thioesters from free amino acids and thiols in water. This one-pot simple method involves two steps: (1) activation in water of an amino acid presumably as its N-carboxyanhydride (NCA) using 1,1′-carbonyldiimidazole (CDI), and (2) subsequent condensation of the activated amino acid-NCA in the presence of a thiol. With this method citrulline peptide thioesters containing up to 10 amino acid residues were prepared in a single reaction. This aqueous synthetic method provides a simple way to prepare peptide thioesters for studies of peptide replication involving ligation of peptide thioesters on peptide templates. The relevance of peptide replication to the origin-of-life process is supported by previous studies showing that amino acid thioesters (peptide thioester precursors) can be synthesized under prebiotic conditions by reaction of small sugars with ammonia and a thiol.  相似文献   

19.
Protein fragments have been activated by the addition of amino acid esters using proteolytic enzymes under conditions where the equilibria are shifted in the direction of synthesis. Because of the natural propensity of large protein fragments to form complexes approximating native conformation, these activated fragments have been induced to recombine by formation of the missing peptide bond. Although the incorporated ester is only weakly activating, the complex, mimicking an enzyme, provides proximity and orientation at the reacting termini, so that coupling yields are high. In other words, the protein catalyzes its own resynthesis. What distinguishes our technique from the rare natural examples of this phenomenon is that it operates at a variety of cleavage sites and with varying chain lengths. There seems to be no particular limitations on the amino acid esters that can be added, and serine proteases with a wide range of specificities can be used. It thus appears that we have a truly general method for the condensation of large fragments in protein synthesis, be they natural or the products of synthetic or genetic methods. This approach has the advantages over conventional methods of great specificity, high efficiency, and mild conditions of use. With our model protein, cytochrome c, we have used this approach to make analogues that illuminate structure-function relations. Both the highly conserved lysine 39 and the functionally invariant threonine 40 have been replaced by a range of substitutions. The results show how crucial these residues are to the structural and functional integrity of the bottom omega-loop of the protein.  相似文献   

20.
Kinetically controlled synthesis of dipeptides using ficin as biocatalyst.   总被引:2,自引:0,他引:2  
The application of the sulfhydryl protease ficin as biocatalyst is proposed as a novel method for enzyme-catalyzed synthesis of dipeptides. The negligible peptidase but considerable esterase activity at alkaline pH facilitated the kinetically controlled formation of peptide bonds by coupling the ester substrates Z-Ala-OMe and Z-Gly-OMe with L-alanine, D-alanine, L-glutamine, D-glutamine and L-Cys(acetamidomethyl) respectively. The reaction is accomplished without the occurrence of secondary peptide hydrolysis. Under optimum reaction conditions (pH 9.2, high ratio nucleophile/carboxyl component, 4.8% ethanol, 40 degrees C), the peptide yields ranged from 5 to 91%, depending on the structure of the amino and/or carboxyl component. No racemization was observed in the enzymatic reaction. Application of short-chain peptides has been advocated recently in clinical nutrition. Ficin-catalyzed peptide synthesis might be an attractive biotechnological approach for the synthesis of suitable dipeptides in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号