首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. These streptococci all coaggregated strongly with both A. viscosus and A. naesludii strains, whereas S. oralis C104 interacted preferentially with certain strains of the latter species. Receptor polysaccharide was isolated from S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The 1H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by 1H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments (1H and 13C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages with the following structure. [----6)Galf(beta 1----3)Galp(beta 1----6)Galf(beta 1----6)GalpNAc(beta 1----3) Galp(alpha 1----1)ribitol(5----PO4-]n  相似文献   

2.
Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). 1H NMR spectra of the polysaccharide show that is is partially O-acetylated. Analysis of the 1H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The 1H and 13C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by 1H-detected heteronuclear multiple-quantum correlation (1H[13C]HMQC). The linkage of the component monosaccharides in the polymer, deduced from two-dimensional 1H-detected heteronuclear multiple-bond correlation spectra (1H[13C]HMBC), shows that the repeating unit of the de-O-acetylated polymer is a linear hexasaccharide with no branch points. The complete 1H and 13C assignment of the native polysaccharide was carried out by the same techniques augmented by a 13C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the 1H spectrum pose difficulties. The fully assigned spectra of the native polymer show that each of two different positions is acetylated in one-third of the repeating subunits and that the acetylation is randomly distributed along the polymer. The exact positions of acetylation were assigned by a carbonyl-selective HMBC method that unambiguously defines the positions of O-acetylation. The complete structure of the native polysaccharide in S. oralis ATCC 10557 is [formula: see text] Comparison of this structure with those previously determined for the polysaccharides of strains 34 and J22 suggests that the similar lectin receptor activities of these molecules may depend on internal galactofuranose linked (beta 1----6)- to Gal(beta 1----3)GalNAc(alpha) or GalNAc(beta 1----3)Gal(alpha).  相似文献   

3.
Structure of a streptococcal adhesin carbohydrate receptor   总被引:3,自引:0,他引:3  
Interactions between complementary protein and carbohydrate structures on different genera of human oral bacteria have been implicated in the formation of dental plaque. The carbohydrate receptor on Streptococcus sanguis H1 (one of the primary colonizing species) that is specific for the adhesin on Capnocytophaga ochracea ATCC 33596 (a secondary colonizer) has been isolated from the streptococcal cell wall, purified, and structurally characterized. The hexasaccharide repeating unit of the polysaccharide was purified by reverse-phase, amino-bonded silica, and gel permeation high performance liquid chromatography. Earlier studies established that the repeating unit was a hexasaccharide composed of rhamnose, galactose, and glucose in the ration of 2:3:1, respectively. In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D. 252Californium plasma desorption mass spectrometry of the native, the acetylated and the reduced and acetylated hexasaccharide determined that the molecular mass of the native hexasaccharide was 959, and that the 2 rhamnose residues were linked to each other at the nonreducing terminus of the linear molecule. Methylation analysis revealed the positions of the glycosidic linkages in the hexasaccharide and showed that a galactose residue was present at the reducing end. The structural characterization of the hexasaccharide was completed by one and two dimensional 1H and 13C NMR spectroscopy. Complete 1H and 13C assignments for each glycosyl residue were established by two-dimensional (1H,1H) correlation spectroscopy, homonuclear Hartmann-Hahn, and (13C,1H) correlation experiments. The configurations of the glycosidic linkages were inferred from the chemical shifts and coupling constants of the anomeric 1H and 13C resonances. The sequence of the glycosyl residues was determined by a heteronuclear multiple bond correlation experiment. These data show that the structure of the hexasaccharide repeating unit derived from the cell wall polysaccharide of S. sanguis H1 is: alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-D-Galp- (1----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----3)-alpha/beta-D-Gal.  相似文献   

4.
Coaggregation between Streptococcus sanguis H1 and Capnocytophaga ochracea ATCC 33596 cells is mediated by a carbohydrate receptor on the former and an adhesin on the latter. Two methods were used to release the carbohydrate receptor from the gram-positive streptococcus, autoclaving and mutanolysin treatment. The polysaccharide released from the streptococcal cell wall by either treatment was purified by ion-exchange chromatography; this polysaccharide inhibited coaggregation when preincubated with the gram-negative capnocytophaga partner. After hydrolysis of the polysaccharide by hydrofluoric acid (HF), the major oligosaccharide of the polysaccharide was purified by high-performance liquid chromatography. By analysis of the HF hydrolysis of the polysaccharide and the purified oligosaccharide, this major oligosaccharide appeared to be the repeating unit of the polysaccharide, with minor components resulting from internal hydrolysis of the major oligosaccharide. Gas chromatography results showed that the oligomer was a hexasaccharide, consisting of rhamnose, galactose, and glucose, in the ratio of 2:3:1, respectively. By weight, the purified hexasaccharide was a fourfold-more-potent inhibitor of coaggregation than the native polysaccharide. Resistance to hydrolysis by sulfuric acid alone and susceptibility to hydrolysis by HF suggested that oligosaccharide chains of the polysaccharide are linked by phosphodiester bonds. Studies with a coaggregation-defective mutant of S. sanguis H1 revealed that the cell walls of the mutant contained neither the polysaccharide nor the hexasaccharide repeating unit. The purification of both a polysaccharide and its constituent hexasaccharide repeating unit, which both inhibited coaggregation, and the absence of this polysaccharide or hexasaccharide on a coaggregation-defective mutant strongly suggest that the hexasaccharide derived from the polysaccharide functions as the receptor for the adhesin from C. ochracea ATCC 33596.  相似文献   

5.
The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could be partially separated by gel chromatography. The structures of the two polysaccharides were determined by chemical methods and by NMR spectroscopy. The teichoic acid-like polymer has a heptasaccharide phosphate repeating unit with the following structure: The structure neither contains ribitol nor glycerol phosphate as classical teichoic acids do, thus we have used the expression teichoic acid-like for this polysaccharide. The following structure of the C-polysaccharide repeating unit was established: where AAT is 2-acetamido-4-amino-2,4, 6-trideoxy-D-galactose. It has a carbohydrate backbone identical to that of one of the two structures of C-polysaccharide previously identified in S. pneumoniae. C-polysaccharide of S. mitis is characterized by the presence, in each repeating unit, of two residues of phosphocholine and both galactosamine residues in the N-acetylated form. Immunochemical analysis showed that C-polysaccharide constitutes the Lancefield group O antigen. Studies using mAbs directed against the backbone and against the phosphocholine moiety of the C-polysaccharide revealed several different patterns of these epitopes among 95 S. mitis and Streptococcus oralis strains tested and the exclusive presence of the group O antigen in the majority of S. mitis biovar 1 strains.  相似文献   

6.
Wang Z  Liu X  Li J  Altman E 《Carbohydrate research》2008,343(3):483-488
The O-chain polysaccharide produced by a mild acid degradation of Aeromonas caviae ATCC 15468 lipopolysaccharide was found to be composed of L-rhamnose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and phosphoglycerol. Subsequent methylation and CE-ESIMS analyses and 1D/2D NMR ((1)H, (13)C and (31)P) spectroscopy showed that the O-chain polysaccharide is a high-molecular-mass acidic branched polymer of tetrasaccharide repeating units with a phosphoglycerol substituent having the following structure: [structure: see text] where Gro represents glycerol and P represents a phosphate group.  相似文献   

7.
The group-specific polysaccharide of the group B Streptococcus was isolated by nitrous acid extraction followed by gel filtration on Sepharose 6B and chromatography on DEAE-Bio-Gel A. It was composed of rhamnose, galactose, N-acetylglucosamine, and glucitol phosphate. Mild periodate oxidation of the polysaccharide resulted in a rapid reduction in molecular weight, indicating that the glucitol was located in the backbone of the polymer. High-resolution 31P NMR showed the presence of a single type of phosphodiester bond in the molecule. Methylation analysis and several specific chemical degradations were done to determine sugar linkages. The basic structure of the group B polysaccharide consists of a backbone of 2-linked rhamnose, 2,4-linked rhamnose, and glucitol phosphate, and side chains of rhamnose(1----3)galactose(1----3)N-acetylglucosamine linked to the 4-position of a rhamnose in the backbone.  相似文献   

8.
As part of our ongoing investigations involving lectinmediatedadhesion among oral bacteria, the receptor polysaccharide fromStreptococcus gordonii 38 was isolated and characterized. Carbohydrateanalysis of the hydrolysed S.gordonii 38 polysaccharide by high-performanceanionexchange chromatography with pulsed amperometric detection(HPAEC-PAD) showed galactose (Gal) (2 mol), N-acetylgalactosamine(GalNAc) (1 mol), rhamnose (Rha) (2 mol), glucose (Glc) (1 mol)and galactosamine-6-phosphate (1 mol). Mild acid hydrolysisof the polysaccharide yielded a heptasaccharide repeating unit.The structure of the heptasaccharide repeating unit was determinedby high-resolution NMR spectroscopy which includes various homonuclear(DOF—COSY, TQF-COSY, NOESY and HOHAHA) and heteronuclearexperiments (HMQC), including linkage assignments by 1H-13Clong-range correlation (HMBC). Complete 1H and 13C NMR assignmentsfor the intact polysaccharide yielded the covalent structureof a heptasaccharide repeating unit:  相似文献   

9.
目的探讨牙龈卟啉单胞菌(Porphyromonas gingivalis)、嵴链球菌(Streptococcus cristatus)、口腔链球菌属(Streptococci oralis)在慢性牙周炎患者及牙周健康者不同口腔解剖部位生物膜的分布情况。方法选取慢性牙周炎患者25例,牙周健康者24例,分别作为慢性牙周炎组及健康对照组。测量临床指标(探诊深度、附着丧失和探诊出血),取受试者龈下菌斑、舌背、颊黏膜和唾液样品。Real-time PCR分析受试者不同受检部位S.cristatus、P.gingivalis、Streptococci oralis相对数量。结果慢性牙周炎组四个受检部位中P.gingivalis数量均大于健康对照组;慢性牙周炎组龈下菌斑中P.gingivalis数量大于其余受检部位;而慢性牙周炎组龈下菌斑、舌背、颊黏膜三个受检部位S.cristatus、Streptococci oralis数量小于健康对照者。结论与牙周健康者比较,慢性牙周炎患者口腔内不同解剖位置P.gingivalis数量增多,S.cristatus、Streptococci oralis数量减少;P.gingivalis检出数量增加提示牙周炎患病风险增加,而S.cristatus、Streptococci oralis检出数量降低提示牙周炎患病风险降低。  相似文献   

10.
The structure of the capsular polysaccharide elaborated by Streptococcus pneumoniae type 18F (S18F) has been investigated by using n.m.r. spectroscopy, methylation analysis, and characterisation of oligosaccharides obtained on partial hydrolysis. It is concluded that the polysaccharide is composed of pentasaccharide repeating-units having the following structure. (formula; see text) In this structure, the absolute configuration of the glycerol phosphate moiety has not been determined, but is assumed to be D-glycerol 1-phosphate (sn-glycerol 3-phosphate). The location of an O-acetyl group at O-6 of the terminal alpha-D-glucopyranosyl groups is tentative only.  相似文献   

11.
I H Johnson 《Microbios》1992,72(290):35-45
A human dental plaque organism, Streptococcus oralis (S. mitior), was cultivated in a dextran-free, dialysed medium, and dextranase activity was isolated from the cell-free, culture supernatant. The lyophilized, crude enzyme preparation, optimum pH 6, was subjected sequentially to anion exchange and gel filtration fast protein liquid chromatography (FPLC). The dextranolytic fraction from gel filtration FPLC produced a symmetrical, baseline resolved peak. The dextranolytic enzyme was purified 1,126-fold with a yield of 2.4%. Amino acid analysis revealed a large proportion of alanine and an abundance of acidic amino acids. This extracellular enzyme isolated from S. oralis is constitutive and has a relative molecular mass of 45 kD. Further investigation of the possible structural and biochemical effects of endogenous bacterial glucanases in human dental plaques is necessary.  相似文献   

12.
The syntheses of galactosylphospholipids and a galactose-containing polymer were observed when radio-labeled UDP-galactose was incubated with the membrane enzymes prepared from a strain of Streptococcus mutans, FA-1. The lipids were resolved into two components, lipids-1 and -2, by thin-layer and DEAE-cellulose column chromatographies. In the latter chromatography, lipid-1 was eluted by 0.0075 M and lipid-2 by 0.18 M ammonium acetate. The syntheses of lipids-1 and -2 were strongly inhibited by UDP and UMP, respectively. Both lipids-1 and -2 were degraded by mild acid, but were stable to mild alkaline hydrolysis. These results, together with their mobilities on thin-layer chromatography, suggest that lipid-1 is a galactosylphosphorylundecaprenol, and lipid-2 is a galactosylpyrophosphorylundecaprenol. When UDP-galactose was incubated with radiolabeled undecaprenol and ATP in the presence of membrane enzymes, lipids with thin-layer chromatographic mobilities of lipid-1 and lipid-2 were observed. The phosphate-to-galactose ratios in lipid-1 and lipid-2 were determined to be 1:1 and 2:1, respectively. These results indicated that lipid-1 and lipid-2 formed are galactosylmonophosphorylundecaprenol and galactosylpyrophosphorylundecaprenol, respectively. The polymer formed was eluted from the DEAE-cellulose column with a low concentration of salts (less than 0.1 M), suggesting that it is probably a polysaccharide, but not a lipoteichoic acid or teichoic acid-type polymer. In order to identify the sugars present in the polymer synthesized, the polymer purified by Sephadex G-50 and DEAE-cellulose column chromatographies was subjected to acid hydrolysis followed by NaB3H4 reduction and paper chromatographic analysis. [3H]Galactitol and a small amount of [3H]galactosaminitol were detected. This result suggests that the polymer is a nascent polysaccharide containing mainly galactose and a small amount of galactosamine, which probably derived from N-acetylgalactosamine during acid hydrolysis of the polymer.  相似文献   

13.
1. Owing to a (3)H isotope effect, the mitochondrial sn-glycerol 3-phosphate oxidase (EC 1.1.99.5) had a mean activity which was 8.4 times less with sn-[2-(3)H]-rather than with sn-[1-(14)C]glycerol 3-phosphate as a substrate. 2. A method for measuring the simultaneous synthesis of lipid from glycerol phosphate and dihydroxyacetone phosphate in rat liver mitochondria is described. 3. The lipid synthesized by rat liver mitochondria from sn-[1-(14)C]glycerol 3-phosphate was mainly phosphatidate and lysophosphatidate, whereas that synthesized from dihydroxy[1-(14)C]acetone phosphate was mainly acyldihydroxyacetone phosphate. 4. Additions of NADPH facilitated the conversion of acyldihydroxyacetone phosphate into lysophosphatidate and phosphatidate. 5. Hydrazine (1.4mm) or KCN (1.4mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but not from glycerol phosphate. 6. Clofenapate (1-2.5mm) inhibited the synthesis of lipids from dihydroxyacetone phosphate but slightly stimulated synthesis from glycerol phosphate. 7. The methanesulphonate of N-(2-benzoyloxyethyl)norfenfluramine, at 0.25-0.75mm, inhibited lipid synthesis from both glycerol phosphate and dihydroxyacetone phosphate.  相似文献   

14.
The coaggregation receptor polysaccharides (RPS) of Streptococcus oralis and related species are recognized by lectin-like adhesins on other members of the oral biofilm community and by RPS-specific antibodies. The former interactions involve beta-GalNAc or beta-Gal containing host-like motifs in the oligosaccharide repeating units of these polysaccharides, whereas the latter involves features of these molecules that are immunogenic. In the present investigation, the molecular and corresponding structural basis for the serotype specificity of S. oralis ATCC 10557 RPS was determined by engineering the production of this polysaccharide in transformable Streptococcus gordonii 38. This involved the systematic replacement of genes in the rps cluster of strain 38 with different but related genes from S. oralis 10557 and structural characterization of the resulting polysaccharides. The results identify four unique genes in the rps cluster of strain 10557. These include wefI for an alpha-Gal transferase, wefJ for a GalNAc-1-phosphotransferase that has a unique acceptor specificity, wefK for an acetyl transferase that acts at two positions in the hexasaccharide repeating unit, and a novel wzy associated with the beta1-3 linkage between these units. The serotype specificity of engineered polysaccharides correlated with the wefI-dependent presence of alpha-Gal in these molecules rather than with partial O-acetylation or with the linkage between repeating units. The findings illustrate a direct approach for defining the molecular basis of polysaccharide structure and antigenicity.  相似文献   

15.
Vibrio cholerae O139 Bengal has recently been identified as a cause of epidemic cholera in Asia. In contrast to V. cholerae O1, V. cholerae O139 Bengal has a polysaccharide capsule. As determined by high-performance anion-exchange chromatography and 1H nuclear magnetic resonance analysis, the capsular polysaccharide of V. cholerae O139 Bengal strain Al1837 has six residues in the repeating subunit; this includes one residue each of N-acetylglucosamine, N-acetylquinovosamine (QuiNAc), galacturonic acid (GalA), and galactose and two residues of 3,6-dideoxyxylohexose (Xylhex). The proposed structure is [formula: see text]  相似文献   

16.
Biosynthetic studies on an acidic polysaccharide, comprising galactose, rhamnose, N-acetylglucosamine and sn-glycerol 1-phosphate, were carried out with a membrane system obtained from Bacillus cereus AHU 1356. Incubation of the membranes with UDP-[14C]Gal, TDP-[14C]Rha and UDP-[14C]GlcNAc resulted in the formation of four or more labeled-sugar-linked lipids and a labeled polysaccharide. Data on structural analysis of the sugar moieties released from the glycolipids, together with results of enzymatic conversion of [14C]galactose-linked lipid and [14C]Rha-Gal-linked lipid to higher-oligosaccharide-linked lipids and polysaccharide, led to the conclusion that the acidic polysaccharide is probably synthesized through the following pathway: (sequence in text) The glycerophosphate residues seem to be derived from phosphatidylglycerol.  相似文献   

17.
1. Protein-free walls of Micrococcus sp. 2102 contain peptidoglycan, poly-(N-acetylglucosamine 1-phosphate) and small amounts of glycerol phosphate. 2. After destruction of the poly-(N-acetylglucosamine 1-phosphate) with periodate, the glycerol phosphate remains attached to the wall, but can be removed by controlled alkaline hydrolysis. The homogeneous product comprises a chain of three glycerol phosphates and an additional phosphate residue. 3. The poly-(N-acetylglucosamine 1-phosphate) is attached through its terminal phosphate to one end of the tri(glycerol phosphate). 4. The other end of the glycerol phosphate trimer is attached through its terminal phosphate to the 3-or 4-position of an N-acetylglucosamine. It is concluded that the sequence of residues in the sugar 1-phosphate polymer-peptidoglycan complex is: (N-acetylglucosamine 1-phosphate)24-(glycerol phosphate)3-N-acetylglucosamine 1-phosphate-muramic acid (in peptidoglycan). Thus in this organism the phosphorylated wall polymer is attached to the peptidoglycan of the wall through a linkage unit comprising a chain of three glycerol phosphate residues and an N-acetylglucosamine 1-phosphate, similar to or identical with the linkage unit in Staphylococcus aureus H.  相似文献   

18.
Streptococcus thermophilus EU20 when grown on skimmed milk secretes a high-molecular-weight exopolysaccharide that is composed of glucose, galactose and rhamnose in a molar ratio of 2:3:2. Using chemical techniques and 1D and 2D-NMR spectroscopy (1H and 13C) the polysaccharide has been shown to possess a heptasaccharide repeating unit having the following structure: [chemical structure: see text]. Treatment of the polysaccharide with mild acid (0.5 M TFA, 100 degrees C for 1 h) liberates two oligosaccharides; the components correspond to the repeating unit and a hexasaccharide equivalent to the repeating unit minus the terminal alpha-L-Rhap.  相似文献   

19.
A shared antigenic teichoic acid, previously found to be a surface capsule-like polysaccharide, was isolated from clinical isolates of Enterococcus faecalis and vancomycin-resistant E. faecium. It was composed of glucose, glycerol, and phosphate as determined by chemical and GC-MS analysis. The repeating-unit structure was elucidated by a series of 1H, 13C, and 31P NMR spectroscopy to be the following: [formula: see text]  相似文献   

20.
Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号