首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang L  Kuang X  Zhang J 《遗传学报》2011,38(11):515-523
Nogo-A is a major myelin associated inhibitor that blocks regeneration of injured axons in the central nervous system (CNS).Nogo-66 (a 66-residue domain of Nogo-A) expressed on the surface of oligodendrocytes has been shown to directly interact with Nogo-66 receptor 1 (NgR1).A number of additional components of NgR1 receptor complex essential for its signaling have been uncovered.However,detailed composition of the complex and its signaling mechanisms remain to be fully elucidated.In this study,we show that Nogo receptor 3 (NgR3),a paralog of NgR1,is a binding protein for NgR1.The interaction is highly specific because other members of the reticulin family,to which Nogo-A belongs,do not bind to NgR3.Neither does NgR3 show any binding activity with Nogo receptor 2 (NgR2),another NgR1 paralog.Majority of NgR3 domains are required for its binding to NgR1.Moreover,a truncated NgR3 with the membrane anchoring domain deleted can function as a decoy receptor to reverse neurite outgrowth inhibition caused by Nogo-66 in culture.These in vitro results,together with previously reported overlapping expression profile between NgR1 and NgR3,suggest that NgR3 may be associated with NgR1 in vivo and that their binding interface may be targeted for treating neuronal injuries.  相似文献   

2.
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.  相似文献   

3.
Kim JE  Liu BP  Park JH  Strittmatter SM 《Neuron》2004,44(3):439-451
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  相似文献   

4.
Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.  相似文献   

5.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   

6.
Activity-induced and developmental downregulation of the Nogo receptor   总被引:7,自引:0,他引:7  
The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypothesized that simultaneous presence of high levels of Nogo and its receptor in neurons confers a locked state to hippocampal and cortical microcircuitry and that one or both of these proteins must be effectively and temporarily downregulated to permit plastic structural changes underlying formation of long-term memory. Hence, we subjected rats to kainic acid treatment and exposed rats to running wheels and measured NgR mRNA levels by quantitative in situ hybridization at different time points. We also studied spinal cord injuries and quantified NgR mRNA levels in spinal cord and ganglia during a critical postnatal period using real-time PCR. Strikingly, kainic acid led to a strong transient downregulation of NgR mRNA levels in gyrus dentatus, hippocampus, and neocortex during a time when BDNF mRNA was upregulated instead. Animals exposed to running wheels for 3 and 7, but not 1 or 21, days showed a significant downregulation of NgR mRNA in cortex, hippocampus and the dentate gyrus. NgR mRNA levels decreased from high to low expression in spinal cord and ganglia during the first week of life. No robust regulation of NgR was observed in the spinal cord following spinal cord injury. Together, our data show that NgR levels in developing and adult neurons are regulated in vivo under different conditions. Strong, rapid and transient downregulation of NgR mRNA in response to kainic acid and after wheel running in cortex and hippocampus suggests a role for NgR and Nogo-A in plasticity, learning and memory.  相似文献   

7.
Nogo-66 is a 66-amino-acid-residue extracellular domain of Nogo-A, which plays a key role in inhibition neurite outgrowth of central nervous system through binding to the Nogo-66 receptor (NgR) expressed on the neuron. Recent studies have confirmed that NgR is also expressed on the surface of macrophages/microglia in multiple sclerosis, but its biological effects remain unknown. In the present study, our results demonstrated that Nogo-66 triggered microglia anti-adhesion and inhibited their migration in vitro, which was mediated by NgR. We also assessed the roles of small GTP (glycosyl phosphatidylinositol)-binding proteins of the Rho family as the downstream signal transducers on the microglia adhesion and mobility induced by Nogo-66. The results showed that Nogo-66 activated RhoA and reduced the activity of Cdc42 in the meanwhile, which further triggered the anti-adhesion and migration inhibition effects to microglia. Nogo-66 inhibited microglia polarization and membrane protrusion formation, thus might eventually contribute to the decreasing capability of cell mobility. Taken together, the Nogo-66/NgR pathway may modulate neuroinflammation via mediating microglia adhesion and migration in addition to its role in neurons. Better understanding the relationship between Nogo-66/NgR and neuroinflammation may help targeting NgR for treating central nervous system diseases related with inflammation.  相似文献   

8.
The recent discovery of the Nogo family of myelin inhibitors and the Nogo-66 receptor opens up a very promising avenue for the development of therapeutic agents for treating spinal cord injury. Nogo-A, the largest member of the Nogo family, is a multidomain protein containing at least two regions responsible for inhibiting central nervous system (CNS) regeneration. So far, no structural information is available for Nogo-A or any of its structural domains. We have subcloned and expressed two Nogo-A fragments, namely the 182 residue Nogo-A(567-748) and the 66 residue Nogo-66 in Escherichia coli. CD and NMR characterization indicated that Nogo-A(567-748) was only partially structured while Nogo-66 was highly insoluble. Nogo-40, a truncated form of Nogo-66, has been previously shown to be a Nogo-66 receptor antagonist that is able to enhance CNS neuronal regeneration. Detailed NMR examinations revealed that a Nogo-40 peptide had intrinsic helix-forming propensity, even in an aqueous environment. The NMR structure of Nogo-40 was therefore determined in the presence of the helix-stabilizing solvent trifluoroethanol. The solution structure of Nogo-40 revealed two well-defined helices linked by an unstructured loop, representing the first structure of Nogo-66 receptor binding ligands. Our results provide the first structural insights into Nogo-A functional domains and may have implications in further designs of peptide mimetics that would enhance CNS neuronal regeneration.  相似文献   

9.

Background

The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study.

Methodology/Principal Findings

We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum. Collapse induced by purified Nogo-A-Δ20 peptide is dependent on protein synthesis whereas that induced by Nogo-66 peptide is not. Nogo-A-Δ20-induced collapse is accompanied by a protein synthesis-dependent rise in RhoA expression in the growth cone, but is unaffected by proteasomal catalytic site inhibition. Conversely Nogo-66-induced collapse is inhibited ∼50% by proteasomal catalytic site inhibition.

Conclusion/Significance

Growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 is mediated by signalling pathways with distinguishable characteristics concerning their dependence on protein synthesis and proteasomal function.  相似文献   

10.
Malignant gliomas are common and aggressive brain tumours associated with significant morbidity and mortality. We showed in this report that substratum adherence and migration by human U87MG glioma cells in culture were significantly attenuated by the extracellular domains of Nogo-A (Nogo-66) and the myelin-associated glycoprotein (MAG). U87MG cells contained significant amounts of endogenous Nogo-66 receptor (NgR), and treatment of the cells with phosphatidylinositol-specific phospholipase C (PI-PLC) or NgR antibodies resulted in an increase in their ability to adhere to, or migrate through, Nogo-66- and MAG-coated substrates. Nogo-66 and MAG may therefore modulate glioma growth and migration by acting through the NgR, a phenomenon that has potential therapeutic implications.  相似文献   

11.
Journal of Molecular Histology - Nogo-A protein consists of two main extracellular domains: Nogo-66 (rat amino acid [aa] 1019–1083) and Nogo-A-Δ20 (extracellular, active 180 amino acid...  相似文献   

12.
Nogo-A is a potent inhibitor of axonal outgrowth in the central nervous system of adult mammals, where it is expressed as a membrane protein on oligodendrocytes and in myelin. Here we describe an attempt to identify linear peptide epitopes in its sequence that are responsible for the interaction either with the Nogo receptor (NgR) or with the neutralizing monoclonal antibody IN-1. Analysis of an array of immobilized overlapping 15 mer peptides covering the entire amino acid sequence of human Nogo-A (1192 residues) revealed a single epitope with prominent binding activity both towards the recombinant NgR and the IN-1 F(ab) fragment. Further truncation and substitution analysis yielded the minimal epitope sequence 'IKxLRRL' (x not equal to P), which occurs within the so-called Nogo66 region (residues 1054-1120) of Nogo-A. The bacterially produced Nogo66 fragment exhibited binding activity both for the recombinant NgR and for the IN-1 F(ab) fragment on the Western blot as well as in ELISA. Unexpectedly, the synthetic epitope peptide and the recombinant Nogo66 showed cross-reactivity with the 8-18C5 F(ab) fragment, which is directed against myelin oligodendrocyte glycoprotein (MOG) as a structurally unrelated target. On the other hand, the recombinant N-terminal domain of Nogo-A (residues 334-966) was shown to specifically interact on the Western blot and in an ELISA with the IN-1 F(ab) fragment but not with the recombinant NgR, which is in agreement with previous results. Hence, our data suggest that there is a distinct binding site for the Nogo receptor in the Nogo66 region of Nogo-A, whereas its interaction with NgR is less specific than anticipated before. Although there probably exists a non-linear epitope for the neutralizing antibody IN-1 in the N-terminal region of Nogo-A, which is likely to be accessible from outside the cell, a previously postulated second binding site for NgR in this region (called Nogo-A-24) remains elusive.  相似文献   

13.
Nogo在中枢神经损伤再生中的作用机制   总被引:1,自引:0,他引:1  
Nogo是中枢神经系统(CNS)少突胶质细胞分泌的一种髓磷脂蛋白,它的主要功能是抑制损伤后轴突的再生,它含有两个完全独立的具有抑制活性的结构域:位于细胞内的amino—Nogo和位于细胞表面的Nogo-66。Nogo-66是通过与受体复合体NgR/p75/Lingo—1结合,触发Rho信号通路来发挥作用。Nogo及其信号转导机制日益成为CNS损伤再生的研究热点,就Nogo在CNS损伤再生中的作用机制作一综述。  相似文献   

14.
Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development prompted speculation that other receptors are involved in the NgR1 complex. Here, we show that an orphan receptor in the TNF family called TAJ, broadly expressed in postnatal and adult neurons, binds to NgR1 and can replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA in the presence of myelin inhibitors. In vitro exogenously added TAJ reversed neurite outgrowth caused by MAIFs. Neurons from Taj-deficient mice were more resistant to the suppressive action of the myelin inhibitors. Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axonal regeneration.  相似文献   

15.
神经轴突生长抑制因子Nogo 家族的研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
Nogo家族是一类神经轴突生长抑制因子家族,目前成员包括Nogo-A,Nogo-B,Nogo-C三个亚型。Nogo家族成员因C末端具有保守的RHD结构域而归属于RTNs家族,表明它们的分布和功能与内质网密切相关。Nogo家族C末端还具有一个进化保守的66氨基酸的功能段称为Nogo-66,体外表达的Nogo-66片段具有抑制神经突生长的作用。Nogo家族成员结构上的区别主要表现在不同剪切长短的N末端序列。Nogo-A主要在中枢和外周神经系统中广泛分布,Nogo-C主要分布在骨骼肌,而Nogo-B则几乎遍布于各种组织与细胞之中。目前,发现可介导Nogo胞内信号转导通路的受体主要是膜外糖蛋白偶联的NgR和跨膜受体p75NTR组成的共受体,但NgR与Nogo-A在胚胎发育中时空表达并不同步提示可能还有其它受体存在。虽然Nogo家族作为神经轴突生长抑制因子被发现,但越来越多的研究表明其可能在胚胎发育、细胞凋亡或神经退行性变等重大事件中扮演重要角色。本文拟就Nogo家族迄今为止突出的研究进展作一综述,旨在为下一步的功能研究工作提供理论参考和依据。  相似文献   

16.
Nogo-66 receptor at cerebellar cortical glia gap junctions in the rat   总被引:5,自引:0,他引:5  
Liu X  Liu YY  Jin WL  Liu HL  Ju G 《Neuro-Signals》2005,14(3):96-101
Nogo-A is a myelin inhibitor of neurite outgrowth that accounts for the difficulty in fiber regeneration in the central nervous system. Its 66-amino-acid extracellular domain (Nogo-66) contributes to the inhibitory activity of Nogo-A. The Nogo-66 receptor is widely distributed in neurons of the central nervous system, including the cerebellum. In our study on the distribution of Nogo-66 receptor in the cerebellar cortex in the rat, we unexpectedly found Nogo-66 receptor immunoreactivity in the glia cells, particularly abundant beneath the Purkinje cells. The presence of Nogo-66 receptor in glia cells has not been reported before. A detailed study was thus conducted. Immunoelectron microscopic investigation clearly demonstrated that the Nogo-66 receptor immunoreactivity could be ascertained at the gap junction between glia cells, indicating that the Nogo-66 receptor may modulate the communication between glia cells through gap junctions.  相似文献   

17.
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.  相似文献   

18.
We report Nogo-A as an oligodendroglial component congregating and interacting with the Caspr-F3 complex at paranodes. However, its receptor Nogo-66 receptor (NgR) does not segregate to specific axonal domains. CHO cells cotransfected with Caspr and F3, but not with F3 alone, bound specifically to substrates coated with Nogo-66 peptide and GST-Nogo-66. Binding persisted even after phosphatidylinositol- specific phospholipase C (PI-PLC) removal of GPI-linked F3 from the cell surface, suggesting a direct interaction between Nogo-66 and Caspr. Both Nogo-A and Caspr co-immunoprecipitated with Kv1.1 and Kv1.2, and the developmental expression pattern of both paralleled compared with Kv1.1, implicating a transient interaction between Nogo-A-Caspr and K(+) channels at early stages of myelination. In pathological models that display paranodal junctional defects (EAE rats, and Shiverer and CGT(-/-) mice), distances between the paired labeling of K(+) channels were shortened significantly and their localization shifted toward paranodes, while paranodal Nogo-A congregation was markedly reduced. Our results demonstrate that Nogo-A interacts in trans with axonal Caspr at CNS paranodes, an interaction that may have a role in modulating axon-glial junction architecture and possibly K(+)-channel localization during development.  相似文献   

19.
Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.  相似文献   

20.
IN-1, the monoclonal antibody against the exon 3-encoded N-terminal domain of Nogo-A, and the Nogo-66 receptor (NgR) antagonist NEP1-40 have both shown efficacy in promoting regeneration in animal spinal cord injury models, the latter even when administered subcutaneously 1 week after injury. These results are supportive of the hypothesis that the Nogo-NgR axis is a major path for inhibition of spinal cord axonal regeneration and uphold the promises of these neutralizing agents in clinical applications. However, mice with targeted disruption of Nogo and NgR have, surprisingly, only modest regenerative capacity (if any) compared with treatment with IN-1 or NEP1-40. Disruption of the Nogo gene by various groups yielded results ranging from significant regenerative improvement in young mice to no improvement. Likewise, knockout of NgR produced some improvement in raphespinal and rubrospinal axonal regeneration, but not that of corticospinal neurons. Other than invoking possible differences in genetic background, we suggest here some possible and testable explanations for the above phenomena. These possibilities include effects of IN-1 and NEP1-40 on the CNS beyond neutralization of Nogo and NgR functions, and the latter's possible role in the CNS beyond that of neuronal growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号