首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
MicroRNAs regulate gene expression by repressing translation or directing sequence-specific degradation of their complementary mRNA. We recently reported that miR-203 is down-regulated, and its exogenous expression inhibits cell growth in canine oral malignant melanoma tissue specimens as well as in canine and human malignant melanoma cells. A microRNA target database predicted E2F3 and ZBP-89 as putative targets of microRNA-203 (miR-203). The expression levels of E2F3a, E2F3b, and ZBP-89 were markedly up-regulated in human malignant melanoma Mewo cells compared with those in human epidermal melanocytes. miR-203 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequence of either E2F3 or ZBP-89 complementary to miR-203. The ectopic expression of miR-203 in melanoma cells reduced the levels of E2F3a, E2F3b, and ZBP-89 protein expression. At the same time, miR-203 induced cell cycle arrest and senescence phenotypes, such as elevated expression of hypophosphorylated retinoblastoma and other markers for senescence. Silencing of E2F3, but not of ZBP-89, inhibited cell growth and induced cell cycle arrest and senescence. These results demonstrate a novel role for miR-203 as a tumor suppressor acting by inducing senescence in melanoma cells.  相似文献   

2.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

3.
Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.  相似文献   

4.
Melanoma is the most aggressive type of skin cancer with a rapid progression and a limited efficiency of therapeutics. Recently, studies have identified some microRNAs playing important roles in the development of melanoma. Syndecan-1 (Syn-1), dysregulated in many cancers, plays important roles in tumor progression by controlling cell proliferation. In this study, we investigated whether microRNA-143 (miR-143) is involved in the regulation of Syn-1 and thus plays a functional role in melanoma. We found that miR-143 expression was significantly lower in melanoma tissues than in normal tissues and its low expression was closely related to clinical stages of melanoma. Further experiments showed that consistent with the inhibitory effects induced by knockdown of Syn-1, overexpression of miR-143 suppressed cell proliferation, promoted G1 phase arrest and induced apoptosis in melanoma. Downregulation of miR-143 apparently produced opposite effects. Combined treatment of miR-143 overexpression and Syn-1 knockdown induced remarkable synergistic effects, while reconstitution of miR-143-resistant Syn-1 reversed the inhibitory activity of miR-143. Moreover, miR-143 level was inversely correlated with Syn-1 expression in melanoma cells. miR-143 directly targeted the 3′-untranslated regions of Syn-1 mRNA and they were in the same Argonaute2 complex. Taken together, this study revealed a link between miRNA-143 and Syn-1 in the pathogenesis of melanoma. MiR-143 plays an important role in the regulation of cell growth in melanoma. Restoration of miR-143 expression may represent a promising and efficient therapeutic approach for targeting malignant melanoma.  相似文献   

5.
6.
D Yan  XD Dong  X Chen  S Yao  L Wang  J Wang  C Wang  DN Hu  J Qu  L Tu 《PloS one》2012,7(7):e40967
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play central roles in diverse pathological processes. In this study, we investigated the effect of microRNA-182 (miR-182) on the development of posterior uveal melanomas. Initially, we demonstrated that miR-182 expression was dependent on p53 induction in uveal melanoma cells. Interestingly, transient transfection of miR-182 into cultured uveal melanoma cells led to a significant decrease in cell growth, migration, and invasiveness. Cells transfected with miR-182 demonstrated cell cycle G1 arrest and increased apoptotic activity. Using bioinformatics, we identified three potential targets of miR-182, namely MITF, BCL2 and cyclin D2. miR-182 was shown to have activity on mRNA expression by targeting the 3' untranslated region of MITF, BCL2 and cyclin D2. Subsequent Western blot analysis confirmed the downregulation of MITF, BCL2 and cyclin D2 protein expression. The expression of oncogene c-Met and its downstream Akt and ERK1/2 pathways was also downregulated by miR-182. Concordant with the findings that miR-182 was decreased in uveal melanoma tissue samples, overexpression of miR-182 also suppressed the in vivo growth of uveal melanoma cells. Our results demonstrated that miR-182, a p53 dependent miRNA, suppressed the expression of MITF, BCL2, cyclin D2 and functioned as a potent tumor suppressor in uveal melanoma cells.  相似文献   

7.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

8.
Compelling evidence shows that deregulated microRNAs (miRNAs) are important regulators in the progression of melanoma. miR-145-5p has been suggested to exhibit antitumorigenic activity in melanoma. However, the molecular mechanism underlying the biological activity of miR-145-5p in melanoma remains to be further understood. Herein, quantitative real-time polymerase chain reaction was used to examine the miR-145-5p expression in malignant melanoma tissues and cells. The interaction between miR-145-5p and toll-like receptor 4 (TLR4) was explored by bioinformatics analyses, luciferase reporter assay, and Western blot. The effects of miR-145-5p or combined with TLR4 on cell proliferation, colony formation, migration, and invasion abilities were investigated by (4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, colony formation, wound healing, and transwell assays, respectively. The melanoma xenograft tumor models were established to determine the biological activity of miR-145-5p in melanoma in vivo. In addition, the changes of the nuclear factor kappa B (NF-κB) pathway were analyzed by detecting the NF-κB activity and the NF-κB p65 protein level. We observed that the miR-145-5p expression was underexpressed in melanoma tissues and cells. miR-145-5p suppressed the TLR4 expression by binding to its 3′untranslated region in melanoma cells. Moreover, TLR4 overexpression abolished the inhibition of cell proliferation, colony formation, migration, and invasion abilities induced by miR-145-5p in melanoma cells. Meanwhile, miR-145-5p was confirmed to restrain melanoma tumor growth in vivo by targeting TLR4. Furthermore, miR-145-5p overexpression inactivated the NF-κB pathway in melanoma in vitro and in vivo, which was reversed by TLR4 overexpression. We concluded that miR-145-5p hindered the occurrence and metastasis of melanoma cells in vitro and in vivo by targeting TLR4 via inactivation of the NF-κB pathway.  相似文献   

9.
Melanoma contributes a lot to skin cancer-related deaths. lncRNAs are implicated in various diseases, including melanoma. lncRNA NEAT1 is frequently dysregulated and can play important roles in multiple cancers. Nevertheless, little has been studied about the function of NEAT1 in melanoma progression. In our present research, we displayed NEAT1 was overexpressed in melanoma cells. A series of functional assays showed that overexpression of NEAT1 promoted the proliferation, migration, and invasion of melanoma cells. By contrast, NEAT1 knockdown obviously restrained melanoma cell progression. Mechanistically, it was revealed that NEAT1 could directly bind with miR-495-3p, which led to a negative effect on miR-495-3p levels. In addition, miR-495-3p was significantly decreased in melanoma cells. Furthermore, E2F3 was postulated as the target of miR-495-3p and overexpression of this miR could suppress the levels of E2F3. Meanwhile, it was exhibited that melanoma cell proliferation, migration, and invasion induced by E2F3 silence was abrogated by miR-495-3p. Moreover, an in vivo xenograft nude mice model was established using A375 cells and it was indicated that NEAT1 promoted melanoma progression in vivo via regulating the miR-495-3p/E2F3 axis. In conclusion, we suggest that NEAT1 exerts an oncogenic effect on melanoma development via inhibition of miR-495-3p and induction of E2F3. NEAT1 might serve as a crucial prognostic biomarker of melanoma.  相似文献   

10.
Melanoma skin cancer is one of the main causes of male cancer-related deaths worldwide. It has been suggested that miR-330-5p can act as a tumor suppressor in various types of cancers. So, in this study, we replaced miR-330 in melanoma cancer cells by vector-based miR-330 to evaluate the effects of this microRNA on the growth and migration inhibition of melanoma cancer cells, and to determine the molecular mechanisms underlying its action. By using the MTT assay, the IC50 of Geneticin antibiotic was obtained as 460 µg/mL. The results of the qRT-PCR showed the increased expression level of miR-330 and decreased expression levels of MMP-9, CXCR4, Vimentin, melanoma cell adhesion molecule, AKT1, and E2F1 messenger RNA in A375 transfected cells. The cytotoxicity assay results demonstrated the inhibition of cancer cells proliferation. Furthermore, the wound healing test results showed a migration reduction of transfected cells with miR-330 compared with nontransfected ones. In addition, 4′,6-diamidino-2-phenylindoleLB: Luria-Bertani (DAPI) staining revealed the significant nucleus fragmentation in miR-330 replaced cells, which correspond to apoptosis induction in replaced cells. The results showed that increase in miR-330 expression level could significantly inhibit the tumor cell growth and the migration of melanoma cancer cells.  相似文献   

11.
Astrocyte elevated gene-1 (AEG-1) is an oncogene overexpressed in multiple types of human cancers including ovarian cancer (OC). However, the underlying mechanism of AEG-1 up-regulation in OC is not well understood. In this study, we showed that miR-137 downregulated AEG-1 expression through interaction with its 3′ untranslated region (3′UTR) and that miR-137 expression was inversely correlated with AEG-1 levels in OC specimens. Similar to the downregulation of AEG-1, overexpression of miR-137 in OC cell lines decreased in vitro cell growth, clonogenicity, and also induced G1 arrest. Importantly, miR-137 overexpression suppressed in vivo tumor growth in nude mice models. Furthermore, we found that restoring the AEG-1 (without the 3′UTR) significantly rescued miR-137-induced cell growth inhibition and cell-cycle arrest. Taken together, these findings indicate that miR-137 functions as a tumor suppressor by inhibition of AEG-1. These molecules might be targets for prevention or treatment of OC.  相似文献   

12.
The microRNA miR-138 is dysregulated in several human cancers, but the underlying mechanism remains largely unknown. Here, we report that miR-138 is commonly underexpressed in nasopharyngeal carcinoma (NPC) specimens and NPC cell lines. The ectopic expression of miR-138 dramatically suppressed cell proliferation and colony formation in vitro and inhibited tumorigenesis in vivo. Moreover, we identified the cyclin D1 (CCND1) gene as a novel direct target of miR-138. In consistent with the knocked-down expression of CCND1, overexpression of miR-138 inhibited cell growth and cell cycle progression in NPC cells. Furthermore, CCND1 was widely upregulated in NPC tumors, and its mRNA levels were inversely correlated with miR-138 expression. Taken together, our findings suggest that miR-138 might be a tumor suppressor in NPC, which is exerted partially by inhibiting CCND1 expression. The identification of functional miR-138 in NPC and its direct link to CCND1 might provide good candidates for developing diagnostic markers and therapeutic applications for NPC.  相似文献   

13.
An accumulated evidence supports that MicroRNAs (miRNAs) have shown a prominent role in pathological processes and different tumor onset. However, to date, the potential functional roles and molecular mechanisms by how microRNA-424-5p(miR-424-5p) affects cancer cell proliferation are greatly unclear, especially in epithelial ovarian cancer(EOC).In this study, we demonstrated that miR-424-5p was significantly down-regulated in EOC tissues and cell lines. The level of miR-424-5p was negatively correlated with tumor size, TNM stage, pathological grade, lymphatic metastasis of EOC. Restoring miR-424-5p expression in EOC cells dramatically suppressed cell proliferation and caused an accumulation of cells in G1 phase, and thus contributed to better prognosis of EOC patients. Mechanistically, miR-424-5p inhibits CCNE1 expression through targeting CCNE1 3′UTR, and subsequent arrest cell cycle in G1/G0 phase by inhibiting E2F1-pRb pathway. This study revealed functional and mechanistic links between miR-424-5p and CCNE1 in the progression of EOC and provide an important insight into that miR-424-5p may serve as a therapeutic target in EOC.  相似文献   

14.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

15.
Melanoma is one of the most aggressive skin cancers. Existing evidence has reported the aberrant expression of microRNAs (miRNAs) in melanoma, but their putative targets and underlying downstream effects remain to be further understood. Herein, we explored the suppressive role of miR-485-5p in melanoma progression. Initial bioinformatics analyses showed that the PRRX1 gene was differentially expressed in melanoma, while miR-485-5p was predicted to be a potential regulatory miRNA binding to PRRX1 mRNA. We confirmed that PRRX1 was upregulated, while miR-485-5p was downregulated in human melanoma samples compared with adjacent normal skin tissues. We then showed that PRRX1 was a target gene of miR-485-5p by dual-luciferase reporter gene assay. Moreover, a reduction in the expression of PRRX1 and downregulation of important proteins of the transforming growth factor-beta (TGFβ) signaling pathway was observed after miR-485-5p overexpression. Furthermore, miR-485-5p overexpression or PRRX1 knockdown suppressed epithelial–mesenchymal transition, cell viability, migration, and invasion, and promoted cell apoptosis in melanoma cells. Our study demonstrates the tumor-suppressive functions of miR-485-5p in the development of human melanoma, providing a potential target for therapy.  相似文献   

16.
Osteosarcoma (OS) is a highly aggressive bone tumor with a poor prognosis. MicroRNAs are revealed to exerts essential roles in the carcinogenesis and tumor invasion of OS. But, the function of miR-1296-5p and its related mechanism in OS progression have not yet been studied. This study discovered the levels of miR-1296-5p in OS and corresponding noncancerous tissues, and we demonstrated that miR-1296-5p level was markedly downregulated in tumor specimens as compared with nontumor tissues. In addition, we discovered that miR-1296-5p was also underexpressed in OS cells compared with the hFOB1.19 osteoblast cells. Interestingly, the reduced expression of miR-1296-5p was confirmed to associated with large tumor size, advanced tumor stages, and distance metastasis, respectively. Patients with OS low-expressing miR-1296-5p showed a prominent shorter survival. In addition, gain-of-function assays verified that miR-1296-5p overexpression remarkably repressed OS cell proliferation, migration, and invasion. Conversely, depletion of miR-1296-5p facilitated the growth and mobility of OS cells. Notably, miR-1296-5p inversely modulated notch receptor 2 (NOTCH2) in OS cells. The level of NOTCH2 messenger RNA was negatively correlated with miR-1296-5p level in OS samples. NOTCH2 knockdown markedly suppressed the abilities of MG-63 cell proliferation and mobility. More importantly, the restoration of NOTCH2 prominently rescued miR-1296-5p-induced tumor-suppressive effects on MG-63 cells. In conclusion, our study identified the reduced expression of miR-1296-5p, which contributed to OS progression. miR-1296-5p might be a promising prognostic marker and therapeutic target in OS.  相似文献   

17.
Propofol is an intravenous anesthetic widely used in clinical surgeries, such as tumor resection. Propofol affects the growth of many cancers, though its effect on melanoma is unknown. Our study aimed to explore how propofol affects melanoma cells. Melanoma cells A2058 and WM793B were cultured with propofol for 24 hr. Propofol significantly suppressed proliferation, migration, and invasion of A2058 and WM793B cells. Lower miR-137 level was observed in A2058 and WM793B cells, compared with normal human epidermal melanocyte HEMa-LP cells. Propofol-induced miR-137 upregulation and decreased proliferation, invasive ability, and migrated ability of A2058 and WM793B cells. Transfection with the miR-137 inhibitor reversed these effects. Additionally, miR-137 was verified to target and negatively regulate fibroblast growth factor 9 (FGF9) expression. Propofol efficiently downregulated FGF9 protein expression by upregulating miR-137. Furthermore, FGF9 overexpression abrogated propofol's repressive effects on the malignant potential of A2058 and WM793B cells. These findings indicate that propofol suppressed melanoma cell proliferation, invasion, and migration by regulating miR-137 and FGF9.  相似文献   

18.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

19.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

20.
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号