首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Valproic acid (VPA) is a clinically available histone deacetylase inhibitor with promising anticancer attributes. Recent studies have demonstrated the anticancer effects of VPA on prostate cancer cells. However, little is known about the differential effects of VPA between metastatic and non-metastatic prostate cancer cells and the relationship between the expression of metastasis suppressor proteins and VPA. In the present study, we demonstrate that inhibition of cell viability and invasion by VPA was more effective in the metastatic prostate cancer cell line PC3 than in the tumorigenic but non-metastatic prostate cell line, RWPE2. Further, we identified that the metastasis suppressor NDRG1 is upregulated in PC3 by VPA treatment. In contrast, NDRG1 was not increased in RWPE2 cells. Also, the suppressed invasion of PC3 cells by VPA treatment was relieved by NDRG1 knockdown. Taken together, we suggest that the anticancer effect of VPA on prostate cancer cells is, in part, mediated through upregulation of NDRG1. We also conclude that VPA has differential effects on the metastasis suppressor gene and invasion ability between non-metastatic and metastatic prostate cancer cells.  相似文献   

4.
Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell–cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.  相似文献   

5.
N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.  相似文献   

6.
7.
8.
9.
10.
11.
Previous studies demonstrated a direct correlation with loss of kangai-1 (KAI1), a metastasis suppressor, and poor prognosis in human prostate and other cancers. In this study, we have characterized the age-dependent downregulation of KAI1 in the TRAMP model which was reversed when mice were fed a genistein-enriched diet. We demonstrated here that doses of genistein (5 and 10 microM)--achievable by supplement intake--significantly induced the expression of KAI1, both at the mRNA and protein levels (up to 2.5-fold), and decreased the invasiveness of TRAMP-C2 cells >2.0-fold. We have pinpointed KAI1 as the invasion suppressor, since its knockdown by siRNA restored the invasive potential of genistein-treated TRAMP-C2 cells to control levels. This work provides the first evidence that genistein treatment may counteract KAI1 downregulation, which is observed in many cancer types and therefore, could be used in anti-metastatic therapies.  相似文献   

12.
N-myc downstream regulated gene-1 (NDRG1) has been identified as a putative metastasis suppressor gene and proved to be a key player in cancer spreading and proliferation in our previous work. However, the effects of NDRG1 on tumor invasion and the mechanisms behind it are rarely understood. Here we provided in silico evidence that NDRG1 plays a crucial role in actin reorganization in colorectal cancer (CRC). Through in vitro experiments, we next observed filopodia formation was altered in NDRG1-modified cell lines, while cell division cycle-42 (CDC42) displayed excessive activation in NDRG1-silenced cells. Mechanistically, NDRG1 loss disrupts the binding between RhoGDIα and CDC42 and triggers the activation of CDC42 and the downstream cascades PAK1/Cofilin, thereby promotes the formation of filopodia and invasiveness of CRC. The knockdown of NDRG1 led to enhanced dissemination of CRC cells in vivo and correlates with active CDC42 expression. Using clinical sample analysis, we found an elevated level of active CDC42 in patients with advanced T stage, and it was negatively related to NDRG1 expression. In sum, these results uncover a mechanism utilized by NDRG1 to regulate CDC42 activity in coordinating cytoskeleton reorganization, which was crucial in cancer invasion.  相似文献   

13.
CD82, also known as KAI1, was recently identified as a prostate cancer metastasis suppressor gene on human chromosome 11p1.2 (ref. 1). The product of CD82 is KAI1, a 40- to 75-kDa tetraspanin cell-surface protein also known as the leukocyte cell-surface marker CD82 (refs. 1,2). Downregulation of KAI1 has been found to be clinically associated with metastatic progression in a variety of cancers, whereas overexpression of CD82 specifically suppresses tumor metastasis in various animal models. To define the mechanism of action of KAI1, we used a yeast two-hybrid screen and identified an endothelial cell-surface protein, DARC (also known as gp-Fy), as an interacting partner of KAI1. Our results indicate that the cancer cells expressing KAI1 attach to vascular endothelial cells through direct interaction between KAI1 and DARC, and that this interaction leads to inhibition of tumor cell proliferation and induction of senescence by modulating the expression of TBX2 and p21. Furthermore, the metastasis-suppression activity of KAI1 was significantly compromised in DARC knockout mice, whereas KAI1 completely abrogated pulmonary metastasis in wild-type and heterozygous littermates. These results provide direct evidence that DARC is essential for the function of CD82 as a suppressor of metastasis.  相似文献   

14.
15.
目的:探讨肿瘤转移抑制基因KAI1/CD82在胆管癌组织中的表达情况及临床病理意义。方法:应用免疫组织化学技术检测48例胆管癌组织及8例正常胆管组织中的KAI1/CD82蛋白表达。结果:KAI1/CD82蛋白在胆管癌组织中阳性表达率31.3%,明显低于正常胆管组织(87.5%,P<0.01)。KAI1/CD82蛋白的表达与肿瘤分化程度、转移相关(P<0.05),而与胆管癌患者年龄、性别、肿瘤部位和病理类型无关。结论:KAI1/CD82蛋白低表达可能参与了胆管癌的发生、发展,并对肿瘤转移的判断有一定指导意义。  相似文献   

16.
17.
KAI1/CD82 protein is a member of the tetraspanin superfamily and has been rediscovered as a cancer metastasis suppressor. The mechanism of KAI1/CD82-mediated suppression of cancer metastasis remains to be established. In this study, we found that migration of the metastatic prostate cancer cell line Du145 was substantially inhibited when KAI1/CD82 was expressed. The expression of focal adhesion kinase (FAK) and Lyn, a Src family tyrosine kinase and substrate of FAK, was up-regulated at both RNA and protein levels upon KAI1/CD82 expression. The activation of FAK and Lyn, however, remained unchanged in Du145-KAI1/CD82 cells. As a downstream target of FAK-Lyn signaling, the p130CAS (Crk-associated substrate) protein was decreased upon the expression of KAI1/CD82. Consequently, less p130CAS-CrkII complex, which functions as a "molecular switch" in cell motility, was formed in Du145-KAI1/CD82 cells. To confirm that the p130CAS-CrkII complex is indeed important for the motility inhibition by KAI1/CD82, overexpression of p130CAS in Du145-KAI1/CD82 cells increased the formation of p130CAS-CrkII complex and largely reversed the KAI1/CD82-mediated inhibition of cell motility. Taken together, our studies indicate the following: 1) signaling of FAK-Lyn-p130CAS-CrkII pathway is altered in KAI1/CD82-expressing cells, and 2) p130CAS-CrkII coupling is required for KAI1/CD82-mediated suppression of cell motility.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号