首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ~65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.  相似文献   

2.
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence.Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning.In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.  相似文献   

3.
Glucokinase (GCK) serves as the pancreatic glucose sensor. Heterozygous inactivating GCK mutations cause hyperglycemia, whereas activating mutations cause hypoglycemia. We studied the GCK V62M mutation identified in two families and co-segregating with hyperglycemia to understand how this mutation resulted in reduced function. Structural modeling locates the mutation close to five naturally occurring activating mutations in the allosteric activator site of the enzyme. Recombinant glutathionyl S-transferase-V62M GCK is paradoxically activated rather than inactivated due to a decreased S0.5 for glucose compared with wild type (4.88 versus 7.55 mM). The recently described pharmacological activator (RO0281675) interacts with GCK at this site. V62M GCK does not respond to RO0281675, nor does it respond to the hepatic glucokinase regulatory protein (GKRP). The enzyme is also thermally unstable, but this lability is apparently less pronounced than in the proven instability mutant E300K. Functional and structural analysis of seven amino acid substitutions at residue Val62 has identified a non-linear relationship between activation by the pharmacological activator and the van der Waals interactions energies. Smaller energies allow a hydrophobic interaction between the activator and glucokinase, whereas larger energies prohibit the ligand from fitting into the binding pocket. We conclude that V62M may cause hyperglycemia by a complex defect of GCK regulation involving instability in combination with loss of control by a putative endogenous activator and/or GKRP. This study illustrates that mutations that cause hyperglycemia are not necessarily kinetically inactivating but may exert their effects by other complex mechanisms. Elucidating such mechanisms leads to a deeper understanding of the GCK glucose sensor and the biochemistry of beta-cells and hepatocytes.  相似文献   

4.
We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of k(cat) and tryptophan fluorescence (I(320/360)) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCK(K140E)), but not the ATP binding cassette (GCK(P417R)), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.  相似文献   

5.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

6.
Glucokinase (GCK) plays a key role in glucose metabolism. GCK mutations are known as a pathogenic cause of maturity-onset diabetes of the young type 2 (MODY2). These mutations are also found in gestational diabetics. The aim of our study was to assess the variability of the GCK gene in the Czech diabetic and control populations. We screened all 10 exons specific for the pancreatic isoform of glucokinase (1a and 2-10) including the intron flanking regions in 722 subjects (in 12 patients with an unrecognised type of MODY and their 10 family members, 313 patients with diabetes mellitus type 2 (DM2), 141 gestational diabetics (GDM), 130 healthy offspring of diabetic parents, and 116 healthy controls without family history of DM2). In two MODY families we identified two mutations in exon 2 of the GCK gene: a novel mutation Val33Ala and the previously described mutation Glu40Lys. In other subgroups (excluding MODY families) we detected only intronic variants and previously described polymorphisms in exons 6 (Tyr215Tyr) and 7 (Ser263Ser), we did not find any known GCK pathogenic mutation. We observed no difference in the frequencies of GCK polymorphisms between Czech diabetic (DM2, GDM) and non-diabetic populations.  相似文献   

7.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   

8.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

9.
The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR.  相似文献   

10.
Mevalonate kinase serine/threonine residues have been implicated in substrate binding and inherited metabolic disease. Alignment of >20 mevalonate kinase sequences indicates that Ser-145, Ser-146, Ser-201, and Thr-243 are the only invariant residues with alcohol side chains. These residues have been individually mutated to alanine. Structural integrity of the mutants has been demonstrated by binding studies using fluorescent and spin-labeled ATP analogs. Kinetic characterization of the mutants indicates only modest changes in K(m)((ATP)). K(m) for mevalonate increases by approximately 20-fold for S146A, approximately 40-fold for T243A, and 100-fold for S201A. V(max) changes for S145A, S201A, and T243A are < or =3-fold. Thus, the 65-fold activity decrease associated with the inherited human T243I mutation seems attributable to the nonconservative substitution rather than any critical catalytic function. V(max) for S146A is diminished by 4000-fold. In terms of V/K(MVA), this substitution produces a 10(5)-fold effect, suggesting an active site location and catalytic role for Ser-146. The large k(cat) effect suggests that Ser-146 productively orients ATP during catalysis. K(D(Mg-ATP)) increases by almost 40-fold for S146A, indicating a specific role for Ser-146 in liganding Mg(2+)-ATP. Instead of mapping within a proposed C-terminal ATP binding motif, Ser-146 is situated in a centrally located motif, which characterizes the galactokinase/homoserine kinase/ mevalonate kinase/phosphomevalonate kinase protein family. These observations represent the first functional demonstration that this region is part of the active site in these related phosphotransferases.  相似文献   

11.
Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1(A261T) and S1(G200D)) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1(A261T) is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin · S1), and reduced ATP-induced dissociation of actin · S1), whereas S1(G200D) shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin · S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1(A261T) (dilated) and S1(G200D) (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1(A261T) weakens the affinity of S1 · ADP for actin, whereas S1(G200D) increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up(2) mutation in Drosophila.  相似文献   

12.
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.  相似文献   

13.
Subunit E is a component of the peripheral stalk(s) that couples membrane and peripheral subunits of the V-ATPase complex. In order to elucidate the function of subunit E, site-directed mutations were performed at the amino terminus and carboxyl terminus. Except for S78A and D233A/T202A, which exhibited V(1)V(o) assembly defects, the function of subunit E was resistant to mutations. Most mutations complemented the growth phenotype of vma4Delta mutants, including T6A and D233A, which only had 25% of the wild-type ATPase activity. Residues Ser-78 and Thr-202 were essential for V(1)V(o) assembly and function. The mutation S78A destabilized subunit E and prevented assembly of V(1) subunits at the membranes. Mutant T202A membranes exhibited 2-fold increased V(max) and about 2-fold less of V(1)V(o) assembly; the mutation increased the specific activity of V(1)V(o) by enhancing the k(cat) of the enzyme 4-fold. Reduced levels of V(1)V(o) and V(o) complexes at T202A membranes suggest that the balance between V(1)V(o) and V(o) was not perturbed; instead, cells adjusted the amount of assembled V-ATPase complexes in order to compensate for the enhanced activity. These results indicated communication between subunit E and the catalytic sites at the A(3)B(3) hexamer and suggest potential regulatory roles for the carboxyl end of subunit E. At the carboxyl end, alanine substitution of Asp-233 significantly reduced ATP hydrolysis, although the truncation 229-233Delta and the point mutation K230A did not affect assembly and activity. The implication of these results for the topology and functions of subunit E within the V-ATPase complex are discussed.  相似文献   

14.
Elongation factor (EF) Tu Thr-25 is a key residue binding the essential magnesium complexed to nucleotide. We have characterized mutations at this position to the related Ser and to Ala, which abolishes the bond to Mg2+, and a double mutation, H22Y/T25S. Nucleotide interaction was moderately destabilized in EF-Tu(T25S) but strongly in EF-Tu(T25A) and EF-Tu(H22Y/T25S). Binding Phe-tRNAPhe to poly(U).ribosome needed a higher magnesium concentration for the latter two mutants but was comparable at 10 mM MgCl2. Whereas EF-Tu(T25S) synthesized poly(Phe), as effectively as wild type, the rate was reduced to 50% for EF-Tu(H22Y/T25S) and was, surprisingly, still 10% for EF-Tu(T25A). In contrast, protection of Phe-tRNAPhe against spontaneous hydrolysis by the latter two mutants was very low. The intrinsic GTPase in EF-Tu(H22Y/T25S) and (T25A) was reduced, and the different responses to ribosomes and kirromycin suggest that stimulation by these two agents follows different mechanisms. Of the mutants, only EF-Tu(T25A) forms a more stable complex with EF-Ts than wild type. This implies that stabilization of the EF-Tu.EF-Ts complex is related to the inability to bind Mg2+, rather than to a decreased nucleotide affinity. These results are discussed in the light of the three-dimensional structure. They emphasize the importance of the Thr-25-Mg2+ bond, although its absence is compatible with protein synthesis and thus with an active overall conformation of EF-Tu.  相似文献   

15.
p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.  相似文献   

16.
The highly conserved amino acids of rat Na,K-ATPase, Thr-774 in the transmembrane helices M5, Val-920 and Gln-923 in M8, and Glu-953 and Glu-954 in M9, the side chains of which appear to be in close proximity, were mutated, and the resulting proteins, T774A, E953A/K, and E954A/K, V920E and Q923N/E/D/L, were expressed in HeLa cells. Ouabain-resistant cell lines were obtained from T774A, V920E, E953A, and E954A, whereas Q923N/E/D/L, E953K, and E954K could only be transiently expressed as fusion proteins with an enhanced green fluorescent protein. The apparent K0.5 values for Na+, as estimated by the Na+-dependent phosphoenzyme formation (K0.5(Na,EP)) or Na,K-ATPase activity (K(0.5)(Na,ATPase)), were increased by around 2 approximately 8-fold in the case of T774A, V920E, and E954A. The apparent K0.5 values for K+, as estimated by the Na,K-ATPase (K0.5(K,ATPase)) or p-nitrophenylphosphatase activity (K0.5(K,pNPPase)), were affected only slightly by the 3 mutations, except that V920E showed a 1.7-fold increase in the K0.5(K,ATPase). The apparent K0.5 values for ATP (K0.5(EP)), as estimated by phosphorylation (a high affinity ATP effect), were increased by 1.6 approximately 2.6-fold in the case of T774A, V920E, and E954A. Those estimated by Na,K-ATPase activity (K0.5(ATPase)) and ATP-induced inhibition (K(i,0.5)(pNPPase)) of K-pNPPase activity (low affinity ATP effects) were, respectively, increased by 1.8-fold and unchanged in the case of T774A but decreased by 2- and 4.8-fold in the case of V920E and were slightly changed and increased by 1.7-fold in the case of E954A. The E953A showed little significant change in the apparent affinities. These results suggest that Gln-923 in M8 is crucial for the active transport of Na+ and/or K+ across membranes and that the side chain oxygen atom of Thr-774 in M5, the methyl group(s) of Val-920 in M8, and the carboxyl oxygen(s) of Glu-954 in M9 mainly play some role in the transport of Na+ and also in the high and low affinity ATP effects rather than the transport of K+.  相似文献   

17.
The glucokinase regulator (GCKR) is a 65-kDa protein that inhibits glucokinase (hexokinase IV) in liver and pancreatic islet. The role of glucokinase (GCK) as pancreatic β cell glucose sensor and the finding of GCK mutations in maturity onset diabetes of the young (MODY) suggest GCKR as a further candidate gene for type 2 diabetes. The inhibition of GCK by GCKR is relieved by the binding of fructose-1-phosphate (F-1-P) to GCKR. F-1-P is the end product of ketohexokinase (KHK, fructokinase), which, like GCK and GCKR, is present in both liver and pancreatic islet. KHK is the first enzyme of the specialized pathway that catabolizes dietary fructose. We have isolated genomic clones containing the human GCKR and KHK genes. By fluorescent in situ hybridization (FISH), KHK maps to Chromosome (Chr) 2p23.2-23.3, a new assignment corroborated by somatic cell hybrid analysis. The localization of GCKR, originally reported by others as 2p22.3, has been reassessed by high-resolution FISH, indicating that, like KHK, GCKR maps to 2p23.2-23.3. The proximity of GCKR and KHK was further demonstrated both by two-color interphase FISH, which suggests that the two genes lie within 500 kb of each other, and by analysis of overlapping YAC and P1 clones spanning the interval between GCKR and KHK. A new microsatellite polymorphism was used to place the GCKR-KHK locus between D2S305 and D2S165 on the genetic map. The co-localization of these two metabolically connected genes has implications for the interpretation of linkage or allele association studies in type 2 diabetes. It also raises the possibility of coordinate regulation of GCKR and KHK by common cis-acting regulatory elements. Received: 8 December 1995 / Accepted: 27 January 1996  相似文献   

18.
Hyperinsulinemic hypoglycemia subtype glucokinase (GCK-HH) is caused by an activating mutation in glucokinase (GCK) and has been shown to increase β-cell death. However, the mechanism of β-cell death in GCK-HH remains poorly understood. Here, we expressed the GCK-HH V91L GCK mutant in INS-1 832/13 cells to determine the effect of the mutation on β-cell viability and the mechanisms of β-cell death. We showed that expression of the V91L GCK mutant in INS-1 832/13 cells resulted in a rapid glucose concentration-dependent loss of cell viability. At 11 mM D-glucose, INS-1 832/13 cells expressing V91L GCK showed increased cell permeability without significant increases in Annexin V staining or caspase 3/7 activation, indicating that these cells are primarily undergoing cell death via necrosis. Over-expression of SV40 large T antigen, which inhibits the p53 pathway, did not affect the V91L GCK-induced cell death. We also found that non-phosphorylatable L-glucose did not induce rapid cell death. Of note, glucose phosphorylation coincided with a 90% loss of intracellular ATP content. Thus, our data suggest that the GCK V91L mutant induces rapid necrosis in INS-1 cells through accelerated glucose phosphorylation, ATP depletion, and increased cell permeability.  相似文献   

19.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

20.
The nucleotide binding properties of mutants with alterations to Asp(351) and four of the other residues in the conserved phosphorylation loop, (351)DKTGTLT(357), of sarcoplasmic reticulum Ca(2+)-ATPase were investigated using an assay based on the 2', 3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine triphosphate (TNP-8N(3)-ATP) photolabeling of Lys(492) and competition with ATP. In selected cases where the competition assay showed extremely high affinity, ATP binding was also measured by a direct filtration assay. At pH 8.5 in the absence of Ca(2+), mutations removing the negative charge of Asp(351) (D351N, D351A, and D351T) produced pumps that bound MgTNP-8N(3)-ATP and MgATP with affinities 20-156-fold higher than wild type (K(D) as low as 0.006 microM), whereas the affinity of mutant D351E was comparable with wild type. Mutations K352R, K352Q, T355A, and T357A lowered the affinity for MgATP and MgTNP-8N(3)-ATP 2-1000- and 1-6-fold, respectively, and mutation L356T completely prevented photolabeling of Lys(492). In the absence of Ca(2+), mutants D351N and D351A exhibited the highest nucleotide affinities in the presence of Mg(2+) and at alkaline pH (E1 state). The affinity of mutant D351A for MgATP was extraordinarily high in the presence of Ca(2+) (K(D) = 0.001 microM), suggesting a transition state like configuration at the active site under these conditions. The mutants with reduced ATP affinity, as well as mutants D351N and D351A, exhibited reduced or zero CrATP-induced Ca(2+) occlusion due to defective CrATP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号