首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Existing evidence has demonstrated liposomes as the gene transporter induce the cytotoxicity during the transfection process through several known pathways. In the present study, we investigated the possibility of siRNAs targeting 3-β-hydroxysterol △-24-reductase (DHCR24), which encodes an enzyme catalyzing the last step of cholesterol biosynthesis, to suppress the liposome cytotoxicity induced by lipid-based transfection reagent in the neuroblastoma cell line N2A. We found that the siRNAs targeting DHCR24 mRNA protect cells from the liposome-induced cell death, probably through the effect of siDHCR24s on the reduction of the cellular cholesterol and decrease in the generation of reactive oxygen species (ROS). This suggests that siRNAs targeting DHCR24 or other methods that reduce the intracellular cholesterol levels might be a good strategy for avoiding the cytotoxicity of liposomes, without impairing its efficiency of gene-delivering.  相似文献   

3.
Cancer cells are frequently glycolytic and over-express hexokinase II (HXK II). In cancer cells, the majority of hexokinase II is localized to the mitochondria through interaction with the voltage dependent anion channel (VDAC). Disruption in the binding of hexokinase II to the mitochondria has been shown to promote mitochondrial injury provoked by pro-apoptotic proteins.

The present study demonstrates that cisplatin induces the PIDD (P53 induced protein with a death domain) dependent activation of caspase-2. In turn, caspase-2 cleaves and activates Bid, resulting in the oligomerization of Bak and the release of cytochrome c. Notably, the detachment of hexokinase II from the mitochondria markedly potentiates the onset of caspase-2 induced mitochondrial damage, thus resulting in a synergistic induction of cisplatin induced cytotoxicity.  相似文献   

4.
《Cytotherapy》2020,22(7):369-376
BackgroundQualitative and quantitative defects in natural killer (NK) cells have been noted in patients with acute myeloid leukemia (AML), providing rationale for infusion of donor-derived NK cells. We previously showed that decitabine enhances expression of NKG2D ligands in AML with additive cytotoxicity when NK cells and Fc (fragment crystallizable region)-engineered CD33 monoclonal antibody (CD33mAb) was used. We conducted a phase 1 study evaluating decitabine and haploidentical NK cells in relapsed AML. Using patient samples from this study, we evaluated whether ex vivo donor-derived expanded NK cells with or without CD33mAb was effective in decitabine-treated AML.MethodsBone marrow aspirates were collected from patients at pre- and post-NK cell infusion. NK cells from healthy donors were expanded for 14 days using irradiated K562 feeder cells displaying membrane-bound IL-21 (mbIL-21). Patient samples were used to test in vitro activity of mbIL-21 NK cells ± CD33m Ab-dependent cellular cytotoxicity (ADCC) and AML patient derived xenograft (PDX) mice were developed to test in vivo activity.ResultsUpon incubation with primary AML blasts, mbIL-21 NK cells showed variable donor-dependent intra-cellular interferon-γ production, which increased with CD33mAb-coated AML. ADCC assays revealed mbIL-21 NK cells effectively lysed primary AML blasts with higher activity on CD33mAb-coated AML. Importantly, CD33mAb-dependent enhanced cytotoxicity by mbIL-21 NK cells was maintained in AML cells from patients even 24 days post-decitabine treatment. In vivo infusion of mbIL-21 NK cells in AML PDX mice, treated with CD33mAb, reduced the tumor burden.DiscussionThese data show the therapeutic utility of mbIL-21 NK cells that can be further potentiated by addition of CD33mAb in AML.  相似文献   

5.
BACKGROUND: P-glycoprotein (Pgp), produced by multidrug resistance-1 gene (mdr-1), is a main mechanism developed by cancer cells to guard against anti-cancer drugs. Alterations of DNA methylation of the mdr-1 gene promoter are known to be linked to mdr-1 gene expression and are probably related to intracellular S-adenosyl-methionine. We here used HepG2 cells to determine the role of the methionine cycle (through the use of the Methionine-Synthase (MS) cofactor, cobalamin) on mdr-1 gene expression. METHODS: Semiquantitative RT-PCR of mdr-1 gene, cellular retention of rhodamine-123, and vinblastine cytotoxicity were carried out on cells cultivated with and without cobalamin. Methylation status of the mdr-1 gene promoter was determined by methylation-specific PCR. RESULTS: Addition of cobalamin to the cells led to an increase in MS activity, to a significant decrease in mdr-1 gene expression which is correlated to an increase in retention of the Pgp substrate Rhodamine 123. Furthermore, cobalamin potentiated cell sensitivity to vinblastine to the same range as that of the Pgp blocker verapamil and prevented methotrexate-induced up-regulation of mdr-1 gene expression. However, no modification in methylation of the mdr-1 gene promoter was observed. CONCLUSION: Cobalamin downregulates mdr-1 gene expression, as well as Pgp expression and function, and significantly increases cytotoxicity of vinblastine. The identification of this novel way of diminishing cellular resistance to the chemotherapeutic agent vinblastine holds promises of leading to better treatments for cancer patients.  相似文献   

6.
7.
BACKGROUND: The possibility exists for major complications to occur when individuals are intoxicated with alcohol prior to anesthetization. Halothane is an anesthetic that can be metabolized by the liver into a highly reactive product, trifluoroacetyl chloride, which reacts with endogenous proteins to form a trifluoroacetyl-adduct (TFA-adduct). The MAA-adduct which is formed by acetaldehyde (AA) and malondialdehyde reacting with endogenous proteins, has been found in both patients and animals chronically consuming alcohol. These TFA and MAA-adducts have been shown to cause the release of inflammatory products by various cell types. If both adducts share a similar mechanism of cell activation, receiving halothane anesthesia while intoxicated with alcohol could exacerbate the inflammatory response and lead to cardiovascular injury. METHODS: We have recently demonstrated that the MAA-adduct induces tumor necrosis factor-alpha (TNF-alpha) release by heart endothelial cells (HECs). In this study, pair and alcohol-fed rats were randomized to receive halothane pretreatments intra peritoneal. Following the pretreatments, the intact heart was removed, HECs were isolated and stimulated with unmodified bovine serum albumin (Alb), MAA-modified Alb (MAA-Alb), Hexyl-MAA, or lipopolysaccharide (LPS), and supernatant concentrations of TNF-alpha were measured by ELISA. RESULTS: Halothane pre-treated rat HECs released significantly greater TNF-alpha concentration following MAA-adduct and LPS stimulation than the non-halothane pre-treated in both pair and alcohol-fed rats, but was significantly greater in the alcohol-fed rats. CONCLUSION: These results demonstrate that halothane and MAA-adduct pre-treatment increases the inflammatory response (TNF-alpha release). Also, these results suggest that halothane exposure may increase the risk of alcohol-induced heart injury, since halothane pre-treatment potentiates the HEC TNF-alpha release measured following both MAA-Alb and LPS stimulation.  相似文献   

8.
9.
Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies.  相似文献   

10.
Aspects of the biological significance of the bisecting N-acetylglucosamine (GlcNAc) structure on N-glycans introduced by beta1,4-N-acetylglucosaminyltransferase III (GnT-III) in Neuro2a cell differentiation are demonstrated. The overexpression of GnT-III in the cells led to the induction of axon-like processes with numerous neurites and swellings, in which beta1 integrin was localized, under conditions of serum starvation. This enhancement in neuritogenesis was suppressed by either the addition of a bisecting GlcNAc-containing N-glycan or erythroagglutinating phytohemagglutinin (E(4)-PHA), which preferentially recognizes the bisecting GlcNAc. GnT-III-promoted neuritogenesis was also significantly perturbed by treatment with a functional blocking anti-beta1 integrin antibody. In fact, beta1 integrin was found to be one of the target proteins of GnT-III, as confirmed by a pull-down assay with E(4)-PHA. These data suggest that N-glycans with a bisecting GlcNAc on target molecules, such as beta1 integrin, play important roles in the regulation of neuritogenesis.  相似文献   

11.
Although bone morphogenetic proteins (BMPs) are clinically useful for bone regeneration, large amounts are required to induce new bone formation in monkeys and humans. We found recently that heparin stimulates BMP activity in vitro (Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003) J. Biol. Chem. 278, 43229-43235). In the present study, we examined whether heparin enhances bone formation induced by BMPs in vivo and attempted to determine the molecular mechanism by which heparin stimulates BMP activity using C2C12 myoblasts. Heparin enhanced BMP-2-induced gene expression and Smad1/5/8 phosphorylation at 24 h and thereafter, although not within 12 h. Heparitinase treatment did not affect the response of cells to BMP-2. In the presence of heparin, degradation of BMP-2 was blocked, and the half-life of BMP-2 in the culture medium was prolonged by nearly 20-fold. Although noggin mRNA was induced by BMP-2 within 1 h regardless of the presence of heparin, noggin failed to inhibit BMP-2 activity in the presence of heparin. Furthermore, simultaneous administration of BMP-2 and heparin in vivo dose-dependently induced larger amounts of mineralized bone tissue compared with BMP-2 alone. These findings clearly indicate that heparin enhances BMP-induced osteoblast differentiation not only in vitro but also in vivo. This study indicates that heparin enhances BMP-induced osteoblast differentiation in vitro and in vivo by protecting BMPs from degradation and inhibition by BMP antagonists.  相似文献   

12.
Molecular Biology Reports - A number of liver diseases are known to be caused by oxidative stress. Petroselinum sativum (P. sativum; parsley) is popular for its anti-inflammatory, antimicrobial,...  相似文献   

13.
14.
(-)-Epigallocatechin-3-gallate (EGCG)-induced apoptosis was along both the extracellular signal-regulated protein kinase (ERK) and c-jun N-terminal kinase (JNK) pathways in Jurkat cells. Co-treatment with EGCG potentiated the cytotoxicity induced by benzyl isothiocyanate (BITC) and H(2)O(2), both being inhibited by ERK and JNK inhibitors. These results suggest the significant role of mitogen-activated protein kinase (MAPK) signaling in the apoptosis induction regulated by EGCG alone and in combination.  相似文献   

15.
Coronary endothelial cell (EC) dysfunction including defective angiogenesis is reported in cardiac diseases. 4-Hydroxynonenal (4HNE) is a lipid peroxidation product, which is increased in cardiac diseases and implicated in cellular toxicity. Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that metabolizes 4HNE and reduces 4HNE-mediated cytotoxicity. Thus, we hypothesize that ALDH2 inhibition potentiates 4HNE-mediated decrease in coronary EC angiogenesis in vitro. To test our hypothesis, first, we treated the cultured mouse coronary EC (MCEC) lines with 4HNE (25, 50, and 75 μM) for 2 and 4 hours. Next, we pharmacologically inhibited ALDH2 by disulfiram (DSF) (2.5 μM) before challenging the cells with 4HNE. In this study, we found that 4HNE attenuated tube formation which indicates decreased angiogenesis. Next, we found that 4HNE has significantly downregulated the expressions of vascular endothelial growth factor receptor (VEGFR) 2 (P < .05 for mRNA and P = .005 for protein), Sirtuin 1 (SIRT 1) (P < 0.0005 for mRNA), and Ets-related gene (ERG) (P < 0.0001 for mRNA and P < 0.005 for protein) in MCECs compared with control. ALDH 2 inhibition by DSF potentiated 4HNE-induced decrease in angiogenesis (P < 0.05 vs 4HNE at 2 h and P < 0.0005 vs 4HNE at 4 h) by decreasing the expressions of VEGFR2 (P < 0.005 for both mRNA and protein), SIRT 1 (P < 0.05), and ERG (P < 0.005) relative to 4HNE alone. Thus, we conclude that ALDH2 acts as a proangiogenic signaling molecule by alleviating the antiangiogenic effects of 4HNE in MCECs.  相似文献   

16.
17.
18.
Liposomes containing highly purified phosphatidylinositol (PI) from plant origin selectively killed tumor cells from 8 out of 9 cultured cell lines, but did not kill 4 types of normal cells. Other phospholipids, including PI or phosphatidylserine from animal origin, synthetic phosphatidic acid, phosphatidyl-glycerol, or phosphatidylcholine, were not cytotoxic. Cholesterol enrichment of cells, shown by other investigators to inhibit tumor development, was slightly cytotoxic in this system, but the toxic effect of cholesterol was minor compared to the massive cytotoxicity induced by plant PI.  相似文献   

19.
Repeated weekly treatment with 100 μg/kg of estradiol benzoate (EB) to ovariectomized female rats intensified the stereotypy induced by the dopamine agonists amphetamine and apomorphine. A similar effect on amphetamine-stereotypy was produced 48 hours after a single injection of 10 μg/kg of EB. The fact that EB failed to increase blood or brain levels of either 3H-amphetamine or 3H-apomorphine suggests that these behavioral effects were not due to altered peripheral drug metabolism or uptake into the brain. The enhancement of stereotypy produced by EB is viewed as one manifestation of a more complex modulatory influence of estrogen on DA function.  相似文献   

20.
In the present study, we investigated the protective effect of zinc on the glucose-induced cytotoxicity in HeLa wild and HeLa-tat cells (30 and 20 mmol/l glucose, respectively). HeLa cells transfected with the protein Tat exhibit a lower antioxidant defense system. Incubation of HeLa wild and HeLa-tat cells with high glucose levels led to a rapid increase in generation of reactive oxygen species (ROS). As expected in the presence of high glucose concentrations, the viability was reduced for both cell lines. The redox status essentially regulated by thiol groups may play an important role in the apoptotic process. Thus, we developed a new method using the p-nitrophenyl disulfide to measure cytosolic thiol groups in intact cells. Cellular zinc was measured using inductively coupled plasma mass spectrometry. Intracellular thiol groups and intracellular zinc concentrations were significantly lower in HeLa cells cultured in hyperglycemic conditions, and their concentrations were significantly lower in HeLa-tat cells than in HeLa wild cells. However, the generation of ROS and the induction of apoptosis by a glucose specific mechanism were prevented by zinc (50 micromol/l) and the intracellular thiol groups and zinc concentrations significantly increased in both cell lines to become similar to the initial values. These results suggest that the glucose oxidation and its subsequent effects on the cells can be prevented by a biological antioxidant such as zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号