首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.  相似文献   

2.
The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix αC and the G loop to generate a viable active site. Helix αC adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.  相似文献   

3.
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase.  相似文献   

4.
The receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), modulate signaling cascades implicated in cellular proliferation, survival, migration, invasion, and angiogenesis. Therefore, dysregulation of HGF/c-Met signaling can compromise the cellular capacity to moderate these activities and can lead to tumorigenesis, metastasis, and therapeutic resistance in various human malignancies. To facilitate studies investigating HGF/c-Met receptor coupling or c-Met signaling events in real time and in living cells and animals, here we describe a genetically engineered reporter where bioluminescence can be used as a surrogate for c-Met tyrosine kinase activity. c-Met kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to the activation or inhibition of the HGF/c-Met signaling pathway. Treatment of tumor-bearing animals with a c-Met inhibitor and the HGF neutralizing antibody stimulated the reporter’s bioluminescence activity in a dose-dependent manner and led to a regression of U-87 MG tumor xenografts. Results obtained from these studies provide unique insights into the pharmacokinetics and pharmacodynamics of agents that modulate c-Met activity and validate c-Met as a target for human glioblastoma therapy.  相似文献   

5.
Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival. Epidermal growth factor receptor (EGFR) and c-Met, two well-known receptor kinases, are coexpressed in multiple cancers including hGBM, corroborating that their downstream signaling pathways enhance a malignant phenotype. The integration of c-Met and EGFR signaling in cancer cells indicates that treatment regimens designed to target both receptor pathways simultaneously could prove effective, though resistance to tyrosine kinase inhibitors continues to be a substantial obstacle. In the present study, we analyzed the antitumor efficacy of EGFR inhibitors erlotinib and gefitinib and c-Met inhibitor PHA-665752, along with their respective small hairpin RNAs (shRNAs) alone or in combination with human umbilical cord blood stem cells (hUCBSCs), in glioma cell lines and in animal xenograft models. We also measured the effect of dual inhibition of EGFR/c-Met pathways on invasion and wound healing. Combination treatments of hUCBSC with tyrosine kinase inhibitors significantly inhibited invasion and wound healing in U251 and 5310 cell lines, thereby indicating the role of hUCBSC in inhibition of RTK-driven cell behavior. Further, the EGFR and c-Met localization in glioma cells and hGBM clinical specimens indicated that a possible cross talk exists between EGFR and c-Met signaling pathway.  相似文献   

6.
Structural basis for the inhibition of tyrosine kinase activity of ZAP-70   总被引:2,自引:0,他引:2  
Deindl S  Kadlecek TA  Brdicka T  Cao X  Weiss A  Kuriyan J 《Cell》2007,129(4):735-746
ZAP-70, a cytoplasmic tyrosine kinase required for T cell antigen receptor signaling, is controlled by a regulatory segment that includes a tandem SH2 unit responsible for binding to immunoreceptor tyrosine-based activation motifs (ITAMs). The crystal structure of autoinhibited ZAP-70 reveals that the inactive kinase domain adopts a conformation similar to that of cyclin-dependent kinases and Src kinases. The autoinhibitory mechanism of ZAP-70 is, however, distinct and involves interactions between the regulatory segment and the hinge region of the kinase domain that reduce its flexibility. Two tyrosine residues in the SH2-kinase linker that activate ZAP-70 when phosphorylated are involved in aromatic-aromatic interactions that connect the linker to the kinase domain. These interactions are inconsistent with ITAM binding, suggesting that destabilization of this autoinhibited ZAP-70 conformation is the first step in kinase activation.  相似文献   

7.
Protein kinases are important drug targets, and a wide variety of methods have been developed for assessing their activity. A key element in developing selective kinase inhibitors is the ability to rapidly compare the effects of an inhibitor on several related or unrelated kinases. We describe a simple, nonradioactive, bead-based method for detecting kinase activity in vitro. Biotinylated peptide substrates are immobilized on beads and phosphorylation is detected with anti-phosphopeptide antibodies with no separation steps required. Phosphorylation is dependent on the amount of kinase in the assay and can be inhibited by known kinase inhibitors in a concentration-dependent manner. Using Luminex technology, we measured the activity of three kinases (PKA, PKC-μ, and Akt) on multiple substrates simultaneously. We also discuss conditions necessary to optimize measurement of the activity of several kinases in a single sample.  相似文献   

8.
Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.  相似文献   

9.
Protein structure determination of soluble globular protein domains has developed into an efficient routine technology which can now be applied to generate and analyze structures of entire human protein families. In the kinase area, several kinase families still lack comprehensive structural analysis. Nevertheless, Structural Genomics (SG) efforts contributed more than 40 kinase catalytic domain structures during the past 4 years providing a rich resource of information for large scale comparisons of kinase active sites. Moreover, many of the released structures are inhibitor complexes that offer chemical starting points for development of selective and potent inhibitors. Here we discuss the currently available structural data and strategies that can be utilized for the development of highly selective inhibitors.  相似文献   

10.
11.
Histidine kinases of bacterial two-component systems are promising antibacterial targets. Despite their varied, numerous roles, enzymes in the histidine kinase superfamily share a catalytic core that may be exploited to inhibit multiple histidine kinases simultaneously. Characterized by the Bergerat fold, the features of the histidine kinase ATP-binding domain are not found in serine/threonine and tyrosine kinases. However, because each kinase family binds the same ATP substrate, we sought to determine if published serine/threonine and tyrosine kinase inhibitors contained scaffolds that would also inhibit histidine kinases. Using select assays, 222 inhibitors from the Roche Published Kinase Set were screened for binding, deactivation, and aggregation of histidine kinases. Not only do the results of our screen support the distinctions between ATP-binding domains of different kinase families, but the lead molecule identified also presents inspiration for further histidine kinase inhibitor development.  相似文献   

12.
The recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific. To find out whether chaperone over-expression is a generally applicable strategy for the production of human protein kinases in E. coli, we analyzed 10 kinases, mainly as catalytic domain constructs. The kinases studied, namely c-Src, c-Abl, Hck, Lck, Igf1R, InsR, KDR, c-Met, b-Raf and Irak4, belong to the tyrosine and tyrosine kinase-like groups of kinases. Upon over-expression of the E. coli chaperones DnaK/DnaJ/GrpE and GroEL/GroES, the yields of 7 from 10 polyhistidine-tagged kinases were increased up to 5-fold after nickel-affinity purification (IMAC). Additive over-expression of the chaperones ClpB and/or trigger factor showed no further improvement. Co-purification of DnaJ and GroEL indicated incomplete kinase folding, therefore, the oligomerization state of the kinases was determined by size-exclusion chromatography. In our study, kinases behave in three different ways. Kinases where yields are not affected by E. coli chaperone over-expression e.g. c-Src elute in the monomeric fraction (category I). Although IMAC yields increase upon chaperone over-expression, InsR and b-Raf kinase are present as soluble aggregates (category II). Igf1R and c-Met kinase catalytic domains are partially complexed with E. coli chaperones upon over-expression; however, they show 2-fold increased yields of monomer (category III). Together, our results suggest that the benefits of chaperone over-expression on the production of protein kinases in E. coli are indeed case-specific.  相似文献   

13.
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.  相似文献   

14.
Hepatocyte growth factor/scatter factor (HGF/SF) can induce proliferation and motility and promote invasion of tumor cells. Since HGF/SF receptor, c-Met, is expressed by tumor cells, and since stimulation of CD44, a transmembrane glycoprotein known to bind hyaluronic acid (HA) in its extracellular domain, is involved in activation of c-Met, we have studied the effects of CD44 stimulation by ligation with HA upon the expression and tyrosine phosphorylation of c-Met on human chondrosarcoma cell line HCS-2/8. The current study indicates that (a) CD44 stimulation by fragmented HA upregulates expression of c-Met proteins; (b) fragmented HA also induces tyrosine phosphorylation of c-Met protein within 30 min, an early event in this pathway as shown by the early time course of stimulation; (c) the effects of HA fragments are critically HA size-dependent. High molecular weight HA is inactive, but lower molecular weight fragments (M(r) 3.5 kDa) are active with maximal effect in the microg/ml range; (d) the standard form of CD44 (CD44s) is critical for the response because the effect on c-Met, both in terms of upregulation and phosphorylation, is inhibited by preincubation with an anti-CD44 monoclonal antibody; and (e) phosphorylation of c-Met induced by CD44 stimulation is inhibited by protein tyrosine kinase inhibitor, tyrphostin. Therefore, our study represents the first report that CD44 stimulation induced by fragmented HA enhances c-Met expression and tyrosine phosphorylation in human chondrosarcoma cells. Taken together, these studies establish a signal transduction cascade or cross-talk emanating from CD44 to c-Met.  相似文献   

15.
16.
Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.  相似文献   

17.
Interleukin-2 tyrosine kinase, Itk, is an important member of the Tec family of non-receptor tyrosine kinases that play a central role in signaling through antigen receptors such as the T-cell receptor, B-cell receptor, and Fcepsilon. Selective inhibition of Itk may be an important way of modulating many diseases involving heightened or inappropriate activation of the immune system. In addition to an unliganded nonphophorylated Itk catalytic kinase domain, we determined the crystal structures of the phosphorylated and nonphosphorylated kinase domain bound to staurosporine, a potent broad-spectrum kinase inhibitor. These structures are useful for the design of novel, highly potent and selective Itk inhibitors and provide insight into the influence of inhibitor binding and phosphorylation on the conformation of Itk.  相似文献   

18.
Previous studies indicated that treatment of cells with 12-O-tetradecanoylphorbol-13-acetate induced phosphorylation of Ser-985 at the juxtamembrane of c-Met, the receptor tyrosine kinase for hepatocyte growth factor (HGF), and this was associated with decreased tyrosine phosphorylation of c-Met. However, the regulatory mechanisms and the biological significance of the Ser-985 phosphorylation in c-Met remain unknown. When A549 human lung cancer cells were exposed to oxidative stress with H(2)O(2), H(2)O(2) treatment induced phosphorylation of Ser-985, but this was abrogated by an inhibitor for protein kinase C (PKC). Likewise, treatment of cells with NaF (an inhibitor of protein phosphatases) allowed for phosphorylation of Ser-985, and a protein phosphatase responsible for dephosphorylation of Ser-985 was identified to be protein phosphatase 2A (PP2A). The effects of PKC inhibitors revealed that PKCdelta and -epsilon were responsible for the Ser-985 phosphorylation of c-Met, and pull-down analysis indicated that associations of PKCdelta and -epsilon with c-Met may be involved in the regulation of Ser-985 phosphorylation of c-Met. Instead, PP2A was constitutively associated with c-Met, whereas its activity to dephosphorylate Ser-985 of c-Met was decreased when cells were exposed to H(2)O(2). Addition of HGF to A549 cells in culture induced c-Met tyrosine phosphorylation, the result being mitogenic response and cell scattering. In contrast, in the presence of H(2)O(2) stress, HGF-dependent tyrosine phosphorylation of c-Met was largely suppressed with a reciprocal relationship to Ser-985 phosphorylation, and this event was associated with abrogation of cellular responsiveness to HGF. These results indicate that Ser-985 phosphorylation of c-Met is bi-directionally regulated through PKC and PP2A, and the Ser-985 phosphorylation status may provide a unique mechanism that confers cellular responsiveness/unresponsivenss to HGF, depending on extracellular conditions.  相似文献   

19.
Radiation therapy for head and neck cancer can result in extensive damage to normal adjacent tissues such as the salivary gland and oral mucosa. We have shown previously that tyrosine phosphorylation at Tyr-64 and Tyr-155 activates PKCδ in response to apoptotic stimuli by facilitating its nuclear import. Here we have identified the tyrosine kinases that mediate activation of PKCδ in apoptotic cells and have explored the use of tyrosine kinase inhibitors for suppression of irradiation-induced apoptosis. We identify the damage-inducible kinase, c-Abl, as the PKCδ Tyr-155 kinase and c-Src as the Tyr-64 kinase. Depletion of c-Abl or c-Src with shRNA decreased irradiation- and etoposide-induced apoptosis, suggesting that inhibitors of these kinases may be useful therapeutically. Pretreatment with dasatinib, a broad spectrum tyrosine kinase inhibitor, blocked phosphorylation of PKCδ at both Tyr-64 and Tyr-155. Expression of “gate-keeper” mutants of c-Abl or c-Src that are active in the presence of dasatinib restored phosphorylation of PKCδ at Tyr-155 and Tyr-64, respectively. Imatinib, a c-Abl-selective inhibitor, also specifically blocked PKCδ Tyr-155 phosphorylation. Dasatinib and imatinib both blocked binding of PKCδ to importin-α and nuclear import, demonstrating that tyrosine kinase inhibitors can inhibit nuclear accumulation of PKCδ. Likewise, pretreatment with dasatinib also suppressed etoposide and radiation induced apoptosis in vitro. In vivo, pre-treatment of mice with dasatinib blocked radiation-induced apoptosis in the salivary gland by >60%. These data suggest that tyrosine kinase inhibitors may be useful prophylactically for protection of nontumor tissues in patients undergoing radiotherapy of the head and neck.  相似文献   

20.
The aim of the present study was to investigate whether/how the recombinant human cardiac IKs could be regulated by epidermal growth factor receptor kinase in HEK 293 cells stably expressing hKCNQ1/hKCNE1 genes using the approaches of perforated patch clamp technique, immunoprecipitation and Western blot analysis. It was found that the broad spectrum isoflavone tyrosine kinase inhibitor genistein and the selective epidermal growth factor receptor kinase inhibitor tyrphostin AG556 suppressed the recombinant IKs, and their inhibition was countered by the protein tyrosine phosphatase inhibitor orthovanadate. The Src-family kinase inhibitor PP2 reduced the current, but the effect was not antagonized by orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hKCNQ1 protein was decreased by genistein or AG556, but not by PP2. These results provide the novel information that epidermal growth factor receptor kinase, but not Src-family kinases, regulates the recombinant cardiac IKs stably expressed in HEK 293 cells via phosphorylating KCNQ1 protein of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号