首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.  相似文献   

2.
3.
Recently, applications of mass spectrometry in the field of clinical proteomics have gained tremendous visibility in the scientific and clinical community. One major objective is the search for potential biomarkers in complex body fluids like serum, plasma, urine, saliva, or cerebral spinal fluid. For this purpose, efficient visualization of large data sets derived from patient cohorts is crucial to provide clinical experts an interactive impression of the data quality. Additionally, it is necessary to apply statistical analysis and pattern matching algorithms to attain validated signal patterns that may allow for later applications in sample classification. We introduce the new ClinProTools bioinformatics software, which performs all major steps of profiling, screening, and monitoring applications in clinical proteomics. ClinProTools is the data interpretation software of the mass spectrometry-based ClinProt solutions for biomarker analysis. ClinProTools performs data pretreatment, visualization, statistics, pattern determination, pattern evaluation, and classification of spectra. This article will focus on ClinProTool's powerful and intuitive visualization options for clinical proteomics applications.  相似文献   

4.
With the onset of modern DNA sequencing technologies, genomics is experiencing a revolution in terms of quantity and quality of sequencing data. Rapidly growing numbers of sequenced genomes and metagenomes present a tremendous challenge for bioinformatics tools that predict protein-coding regions. Experimental evidence of expressed genomic regions, both at the RNA and protein level, is becoming invaluable for genome annotation and training of gene prediction algorithms. Evidence of gene expression at the protein level using mass spectrometry-based proteomics is increasingly used in refinement of raw genome sequencing data. In a typical "proteogenomics" experiment, the whole proteome of an organism is extracted, digested into peptides and measured by a mass spectrometer. The peptide fragmentation spectra are identified by searching against a six-frame translation of the raw genomic assembly, thus enabling the identification of hitherto unpredicted protein-coding genomic regions. Application of mass spectrometry to genome annotation presents a range of challenges to the standard workflows in proteomics, especially in terms of proteome coverage and database search strategies. Here we provide an overview of the field and argue that the latest mass spectrometry technologies that enable high mass accuracy at high acquisition rates will prove to be especially well suited for proteogenomics applications.  相似文献   

5.
ABSTRACT

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging.

Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome.

Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.  相似文献   

6.
A frequent goal of MS‐based proteomics experiments nowadays is to quantify changes in the abundance of proteins across several biological samples. The iTRAQ labeling method is a powerful technique; when combined with LC coupled to MS/MS it allows relative quantitation of up to eight different samples simultaneously. Despite the usefulness of iTRAQ current software solutions have limited functionality and require the combined use of several software programs for analysis of the data from different MS vendors. We developed an integrated tool, now available in the virtual expert mass spectrometrist (VEMS) program, for database‐dependent search of MS/MS spectra, quantitation and database storage for iTRAQ‐labeled samples. VEMS also provides useful alternative report types for large‐scale quantitative experiments. The implemented statistical algorithms build on quantitative algorithms previously used in proposed iTRAQ tools as described in detail herein. We propose a new algorithm, which provides more accurate peptide ratios for data that show an intensity‐dependent saturation. The accuracy of the proposed iTRAQ algorithm and the performance of VEMS are demonstrated by comparing results from VEMS, MASCOT and PEAKS Q obtained by analyzing data from a reference mixture of six proteins. Users can download VEMS and test data from “ http://www.portugene.com/software.html ”.  相似文献   

7.
Andromeda: a peptide search engine integrated into the MaxQuant environment   总被引:3,自引:0,他引:3  
A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.  相似文献   

8.
The recent improvements in mass spectrometry instruments and new analytical methods are increasing the intersection between proteomics and big data science. In addition, bioinformatics analysis is becoming increasingly complex and convoluted, involving multiple algorithms and tools. A wide variety of methods and software tools have been developed for computational proteomics and metabolomics during recent years, and this trend is likely to continue. However, most of the computational proteomics and metabolomics tools are designed as single‐tiered software application where the analytics tasks cannot be distributed, limiting the scalability and reproducibility of the data analysis. In this paper the key steps of metabolomics and proteomics data processing, including the main tools and software used to perform the data analysis, are summarized. The combination of software containers with workflows environments for large‐scale metabolomics and proteomics analysis is discussed. Finally, a new approach for reproducible and large‐scale data analysis based on BioContainers and two of the most popular workflow environments, Galaxy and Nextflow, is introduced to the proteomics and metabolomics communities.  相似文献   

9.
New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientist's data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.  相似文献   

10.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   

11.
Complex proteoforms contain various primary structural alterations resulting from variations in genes, RNA, and proteins. Top‐down mass spectrometry is commonly used for analyzing complex proteoforms because it provides whole sequence information of the proteoforms. Proteoform identification by top‐down mass spectral database search is a challenging computational problem because the types and/or locations of some alterations in target proteoforms are in general unknown. Although spectral alignment and mass graph alignment algorithms have been proposed for identifying proteoforms with unknown alterations, they are extremely slow to align millions of spectra against tens of thousands of protein sequences in high throughput proteome level analyses. Many software tools in this area combine efficient protein sequence filtering algorithms and spectral alignment algorithms to speed up database search. As a result, the performance of these tools heavily relies on the sensitivity and efficiency of their filtering algorithms. Here, we propose two efficient approximate spectrum‐based filtering algorithms for proteoform identification. We evaluated the performances of the proposed algorithms and four existing ones on simulated and real top‐down mass spectrometry data sets. Experiments showed that the proposed algorithms outperformed the existing ones for complex proteoform identification. In addition, combining the proposed filtering algorithms and mass graph alignment algorithms identified many proteoforms missed by ProSightPC in proteome‐level proteoform analyses.  相似文献   

12.
13.
MOTIVATION: Experimental techniques in proteomics have seen rapid development over the last few years. Volume and complexity of the data have both been growing at a similar rate. Accordingly, data management and analysis are one of the major challenges in proteomics. Flexible algorithms are required to handle changing experimental setups and to assist in developing and validating new methods. In order to facilitate these studies, it would be desirable to have a flexible 'toolbox' of versatile and user-friendly applications allowing for rapid construction of computational workflows in proteomics. RESULTS: We describe a set of tools for proteomics data analysis-TOPP, The OpenMS Proteomics Pipeline. TOPP provides a set of computational tools which can be easily combined into analysis pipelines even by non-experts and can be used in proteomics workflows. These applications range from useful utilities (file format conversion, peak picking) over wrapper applications for known applications (e.g. Mascot) to completely new algorithmic techniques for data reduction and data analysis. We anticipate that TOPP will greatly facilitate rapid prototyping of proteomics data evaluation pipelines. As such, we describe the basic concepts and the current abilities of TOPP and illustrate these concepts in the context of two example applications: the identification of peptides from a raw dataset through database search and the complex analysis of a standard addition experiment for the absolute quantitation of biomarkers. The latter example demonstrates TOPP's ability to construct flexible analysis pipelines in support of complex experimental setups. AVAILABILITY: The TOPP components are available as open-source software under the lesser GNU public license (LGPL). Source code is available from the project website at www.OpenMS.de  相似文献   

14.
Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.  相似文献   

15.
Discovery or shotgun proteomics has emerged as the most powerful technique to comprehensively map out a proteome. Reconstruction of protein identities from the raw mass spectrometric data constitutes a cornerstone of any shotgun proteomics workflow. The inherent uncertainty of mass spectrometric data and the complexity of a proteome render protein inference and the statistical validation of protein identifications a non-trivial task, still being a subject of ongoing research. This review aims to survey the different conceptual approaches to the different tasks of inferring and statistically validating protein identifications and to discuss their implications on the scope of proteome exploration.  相似文献   

16.
Proteomics has been proposed as one of the key technologies in the postgenomic era. So far, however, the comprehensive analysis of cellular proteomes has been a challenge because of the dynamic nature and complexity of the multitude of proteins in cells and tissues. Various approaches have been established for the analyses of proteins in a cell at a given state, and mass spectrometry (MS) has proven to be an efficient and versatile tool. MS-based proteomics approaches have significantly improved beyond the initial identification of proteins to comprehensive characterization and quantification of proteomes and their posttranslational modifications (PTMs). Despite these advances, there is still ongoing development of new technologies to profile and analyze cellular proteomes more completely and efficiently. In this review, we focus on MS-based techniques, describe basic approaches for MS-based profiling of cellular proteomes and analysis methods to identify proteins in complex mixtures, and discuss the different approaches for quantitative proteome analysis. Finally, we briefly discuss novel developments for the analysis of PTMs. Altered levels of PTM, sometimes in the absence of protein expression changes, are often linked to cellular responses and disease states, and the comprehensive analysis of cellular proteome would not be complete without the identification and quantification of the extent of PTMs of proteins.  相似文献   

17.
MOTIVATION: Bioinformatics clustering tools are useful at all levels of proteomic data analysis. Proteomics studies can provide a wealth of information and rapidly generate large quantities of data from the analysis of biological specimens. The high dimensionality of data generated from these studies requires the development of improved bioinformatics tools for efficient and accurate data analyses. For proteome profiling of a particular system or organism, a number of specialized software tools are needed. Indeed, significant advances in the informatics and software tools necessary to support the analysis and management of these massive amounts of data are needed. Clustering algorithms based on probabilistic and Bayesian models provide an alternative to heuristic algorithms. The number of clusters (diseased and non-diseased groups) is reduced to the choice of the number of components of a mixture of underlying probability. The Bayesian approach is a tool for including information from the data to the analysis. It offers an estimation of the uncertainties of the data and the parameters involved. RESULTS: We present novel algorithms that can organize, cluster and derive meaningful patterns of expression from large-scaled proteomics experiments. We processed raw data using a graphical-based algorithm by transforming it from a real space data-expression to a complex space data-expression using discrete Fourier transformation; then we used a thresholding approach to denoise and reduce the length of each spectrum. Bayesian clustering was applied to the reconstructed data. In comparison with several other algorithms used in this study including K-means, (Kohonen self-organizing map (SOM), and linear discriminant analysis, the Bayesian-Fourier model-based approach displayed superior performances consistently, in selecting the correct model and the number of clusters, thus providing a novel approach for accurate diagnosis of the disease. Using this approach, we were able to successfully denoise proteomic spectra and reach up to a 99% total reduction of the number of peaks compared to the original data. In addition, the Bayesian-based approach generated a better classification rate in comparison with other classification algorithms. This new finding will allow us to apply the Fourier transformation for the selection of the protein profile for each sample, and to develop a novel bioinformatic strategy based on Bayesian clustering for biomarker discovery and optimal diagnosis.  相似文献   

18.
Abstract New methods for performing quantitative proteome analyses based on differential labeling protocols or label-free techniques are reported in the literature on an almost monthly basis. In parallel, a correspondingly vast number of software tools for the analysis of quantitative proteomics data has also been described in the literature and produced by private companies. In this article we focus on the review of some of the most popular techniques in the field and present a critical appraisal of several software packages available to process and analyze the data produced. We also describe the importance of community standards to support the wide range of software, which may assist researchers in the analysis of data using different platforms and protocols. It is intended that this review will serve bench scientists both as a useful reference and a guide to the selection and use of different pipelines to perform quantitative proteomics data analysis. We have produced a web-based tool ( http://www.proteosuite.org/?q=other_resources ) to help researchers find appropriate software for their local instrumentation, available file formats, and quantitative methodology.  相似文献   

19.
Proteomic studies involve the identification as well as qualitative and quantitative comparison of proteins expressed under different conditions, and elucidation of their properties and functions, usually in a large-scale, high-throughput format. The high dimensionality of data generated from these studies will require the development of improved bioinformatics tools and data-mining approaches for efficient and accurate data analysis of biological specimens from healthy and diseased individuals. Mining large proteomics data sets provides a better understanding of the complexities between the normal and abnormal cell proteome of various biological systems, including environmental hazards, infectious agents (bioterrorism) and cancers. This review will shed light on recent developments in bioinformatics and data-mining approaches, and their limitations when applied to proteomics data sets, in order to strengthen the interdependence between proteomic technologies and bioinformatics tools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号