首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

2.
The high-affinity inhibition of stromelysin 1 (MMP-3) by tissue inhibitor of metalloproteinases 1 (TIMP-1) helps control tissue remodeling and tumor development. The interaction of N-TIMP-1 with the catalytic domain of MMP-3 has been investigated by titration calorimetry and 15N NMR. Their unfavorable enthalpy of binding of +6.5 kcal mol(-1) is unusual among protein-protein associations, deviates from structure-based prediction, and is compensated by a net entropy increase providing at least 18 kcal mol(-1) of favorable free energy of binding at a 1M reference state. The small heat capacity of binding agrees well with the heat capacity predicted from 65% of the surface buried on binding being polar, and suggests that the hydrophobic effect can account for only part of the entropy of binding. Using NMR, binding-induced changes in the backbone of N-TIMP-1 were checked as one possible source of conformational entropy changes. MMP binding slightly increases rigidity in some contact sites in TIMP-1 but increases mobility remotely in the otherwise rigid beta-barrel core of N-TIMP-1, increasing 15N relaxation evidence of pico- to nanosecond and micro- to millisecond fluctuations of beta-strands A-F. Residual dipolar couplings suggest dynamic deviations from X-ray coordinates of the complex. These suggest that the beta-barrel has small backbone conformational fluctuations, while segments of strands betaB, betaE and betaF might experience fluctuations only in their backbone environment. This is a distinctive example of affinity between two well-structured proteins being enhanced by increased conformational entropy in the reservoir of a folding core.  相似文献   

3.
The high-affinity binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is essential for regulation of the turnover of the extracellular matrix during development, wound healing, and progression of inflammatory diseases, such as cancer, atherosclerosis, and arthritis. Bacterially expressed N-terminal inhibitory domains of TIMPs (N-TIMPs) have been used extensively for biochemical and biophysical study of interactions with MMPs. Titration of N-TIMP-1 expressed in E. coli indicates, however, that only about 42% of the protein is active as an MMP inhibitor. The separation of inactive from fully active N-TIMP-1 has been achieved both by MMP affinity and by high-resolution cation exchange chromatography at an appropriate pH, based on a slight difference of charge. Purification by cation exchange chromatography with a Mono S column enriches the active portion of N-TIMP-1 to >95%, with K(i) of 1.5 nM for MMP-12. Mass spectra reveal that the inactive form differs from active N-TIMP-1 in being N-terminally acetylated, underscoring the importance of the free alpha-NH(2) of Cys1 for MMP inhibition. N(alpha)-acetylation of the CTCVPP sequence broadens the N-terminal sequence motifs reported to be susceptible to alpha-amino acetylation by E. coli N-acetyl transferases. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 960-968, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

4.
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.  相似文献   

5.
Arumugam S  Van Doren SR 《Biochemistry》2003,42(26):7950-7958
Crystal structures of catalytic domains of MMP-3 and MT1-MMP bound to TIMP-1 or TIMP-2, respectively, differ in the orientation of the TIMP in the MMP active site. The orientation in solution of N-TIMP-1 in the MMP-3 active site has been investigated using residual dipolar couplings (RDCs). Fitting of the RDCs to the X-ray structures of the complexes suggests general agreement with the orientation of crystalline MMP-3(DeltaC) and TIMP-1 and a large disparity from the orientation of crystalline MT1-MMP(DeltaC) and TIMP-2. Rigid body docking of MMP-3 and N-TIMP-1 X-ray coordinates using RDCs and intermolecular NOEs provided a time-averaged orientation in solution differing from the crystal structure by a 5 degrees rotation toward the MT1-MMP(DeltaC)/TIMP-2 orientation. The slight discrepancy in orientations in solution and crystal lies within the experimental uncertainties. Intermolecular NOEs used in the docking corroborated the accuracy of mapping the interface by a paramagnetic NMR footprinting assay, a potential alternative source of contacts for docking. Some uncertainty in the N-TIMP-1 orientation in the MMP-3 active site, coupled with microsecond to millisecond fluctuations of the MMP-binding ridge of N-TIMP-1 in the complex and flexibility in MMP-3(DeltaC) S(1)' to S(3)' subsites, leaves open the possibility that N-TIMP-1 might dynamically pivot a few degrees or more in the arc toward the MT1-MMP(DeltaC)/TIMP-2 orientation. Differing TIMP orientations in MMP active sites are more likely to result from structural differences in TIMP AB hairpin loops than from crystal packing artifacts.  相似文献   

6.
The mammalian collagenases are a subgroup of the matrix metalloproteinases (MMPs) that are uniquely able to cleave triple helical fibrillar collagens. Collagen breakdown is an essential part of extracellular matrix turnover in key physiological processes including morphogenesis and wound healing; however, unregulated collagenolysis is linked to important diseases such as arthritis and cancer. The tissue inhibitors of metalloproteinases (TIMPs) function in controlling the activity of MMPs, including collagenases. We report here the structure of a complex of the catalytic domain of fibroblast collagenase (MMP-1) with the N-terminal inhibitory domain of human TIMP-1 (N-TIMP-1) at 2.54 A resolution. Comparison with the previously reported structure of the TIMP-1/stromelysin-1 (MMP-3) complex shows that the mechanisms of inhibition of both MMPs are generally similar, yet there are significant differences in the protein-protein interfaces in the two complexes. Specifically, the loop between beta-strands A and B of TIMP-1 makes contact with MMP-3 but not with MMP-1, and there are marked differences in the roles of individual residues in the C-D connector of TIMP-1 in binding to the two MMPs. Structural rearrangements in the bound MMPs are also strikingly different. This is the first crystallographic structure that contains the truncated N-terminal domain of a TIMP, which shows only minor differences from the corresponding region of the full-length protein. Differences in the interactions in the two TIMP-1 complexes provide a structural explanation for the results of previous mutational studies and a basis for designing new N-TIMP-1 variants with restricted specificity.  相似文献   

7.
Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 ? resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.  相似文献   

8.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

9.
Wei S  Xie Z  Filenova E  Brew K 《Biochemistry》2003,42(42):12200-12207
The four tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that regulate the activity of matrix metalloproteinases (MMPs) and certain disintegrin and metalloproteinase (ADAM) family proteases in mammals. The protease inhibitory activity is present in the N-terminal domains of TIMPs (N-TIMPs). In this work, the N-terminal inhibitory domain of the only TIMP produced by Drosophila (dN-TIMP) was expressed in Escherichia coli and folded in vitro. The purified recombinant protein is a potent inhibitor of human MMPs, including membrane-type 1-MMP, although it lacks a disulfide bond that is conserved in all other known N-TIMPs. Titration with the catalytic domain of human MMP-3 [MMP-3(DeltaC)] showed that dN-TIMP prepared by this method is correctly folded and fully active. dN-TIMP also inhibits, in vitro, the activity of the only two MMPs of Drosophila, dm1- and dm2-MMPs, indicating that the Drosophila TIMP is an endogenous inhibitor of the Drosophila MMPs. dN-TIMP resembles mammalian N-TIMP-3 in strongly inhibiting human tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) but is a weak inhibitor of human ADAM10. Models of the structures of dN-TIMP and N-TIMP-3 are strikingly similar in surface charge distribution, which may explain their functional similarity. Although the gene duplication events that led to the evolutionary development of the four mammalian TIMPs might be expected to be associated with functional specialization, Timp-3 appears to have conserved most of the functions of the ancestral TIMP gene.  相似文献   

10.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

11.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

12.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

13.
Membrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing. Here, we have shown that individual Timp deficiencies differentially affect MMP-2 processing using primary mouse embryonic fibroblasts (MEFs). Timp-3 deficiency accelerated pro-MMP-2 activation in response to both cytochalasin D and concanavalin A. Exogenous TIMP-2 and N-TIMP-3 inhibited this activation, whereas TIMP-3 containing matrix from wild-type MEFs did not rescue the enhanced MMP-2 activation in Timp-3(-/-) cells. Increased processing of MMP-2 did not arise from increased expression of MT1-MMP, MT2-MMP, or MT3-MMP or altered expression of TIMP-2 and MMP-2. To test whether increased MMP-2 processing in Timp-3(-/-) MEFs is dependent on TIMP-2, double deficient Timp-2(-/-)/-3(-/-) MEFs were used. In these double deficient cells, the cleavage of pro-MMP-2 to its intermediate form was substantially increased, but the subsequent cleavage of intermediate-MMP-2 to fully active form, although absent in Timp-2(-/-) MEFs, was detectable with combined Timp-2(-/-)/-3(-/-) deficiency. TIMP-4 associates with MMP-2 and MT1-MMP in a manner similar to TIMP-3, but its deletion had no effect on pro-MMP-2 processing. Thus, TIMP-3 provides an inherent regulation over the kinetics of pro-MMP-2 processing, serving at a level distinct from that of TIMP-2 and TIMP-4.  相似文献   

14.
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the cultures of mouse osteoblastic MC3T3-E1 cells, mouse primary osteoblastic (POB) cells, and neonatal mouse calvariae. Expression of either MMP-2, -3, -9, -11, -13, and -14 or TIMP-1, -2, and -3 was detected in MC3T3-E1 cells and POB cells. When the bone resorptive factors parathyroid hormone, 1,25-dihydroxyvitamin D(3), prostaglandin E(2), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were added to the cell cultures, MMP-13 mRNA levels were found predominantly to increase by all resorptive factors in the three cultures. mRNA levels of either MMP-3 and -9 or TIMP-1 and -3 were found to increase mainly by the cytokines IL-1beta and TNF-alpha. BB94, a nonselective MMP inhibitor, neutralized the (45)Ca release stimulated by these resorptive factors to an extent similar to that of calcitonin, strongly suggesting that bone resorptive factors function at least partly through MMP formation. We propose that MMP-13 mRNA expression in osteoblastic cells may play an important role in stimulating matrix degradation by both systemic and local resorptive factors, whereas either MMP-3 and -9 or TIMP-1 and -3 might modulate matrix degradation by local cytokines only.  相似文献   

15.
The backbone mobility of the N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP-2) was determined both for the free protein and when bound to the catalytic domain of matrix metalloproteinase-3 (N-MMP-3). Regions of the protein with internal motion were identified by comparison of the T(1) and T(2) relaxation times and (1)H-(15)N nuclear Overhauser effect values for the backbone amide (15)N signals for each residue in the sequence. This analysis revealed rapid internal motion on the picosecond to nanosecond time scale for several regions of free N-TIMP-2, including the extended beta-hairpin between beta-strands A and B, which forms part of the MMP binding site. Evidence of relatively slow motion indicative of exchange between two or more local conformations on a microsecond to millisecond time scale was also found in the free protein, including two other regions of the MMP binding site (the CD and EF loops). On formation of a tight N-TIMP-2. N-MMP-3 complex, the rapid internal motion of the AB beta-hairpin was largely abolished, a change consistent with tight binding of this region to the MMP-3 catalytic domain. The extended AB beta-hairpin is not a feature of all members of the TIMP family; therefore, the binding of this highly mobile region to a site distant from the catalytic cleft of the MMPs suggests a key role in TIMP-2 binding specificity.  相似文献   

16.
Studies of the structural basis of the interactions of tissue inhibitors of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) may provide clues for designing MMP-specific inhibitors. In this paper we report combinations of mutations in the major MMP-binding region that enhance the specificity of N-TIMP-1. Mutants with substitutions for residues 4 and 68 were characterized and combined with previously studied Thr(2) mutations to generate mutants with improved selectivity or binding affinity to specific MMPs. Some combinations of mutations had non-additive effects on DeltaG of binding to MMPs, suggesting interactions between subsites in the reactive site. The T2L/V4S mutation generates an inhibitor that binds to MMP-2 20-fold more tightly than to MMP-3(DeltaC) and over 400-fold more tightly than to MMP-1. The T2S/V4A/S68Y mutant is the strongest inhibitor for stromelysin-1 among all mutants characterized to date, with an apparent K(i) for MMP-3(DeltaC) in the picomolar range. A third mutant, T2R/V4I, has no detectable inhibitory activity for MMP-1 but is an effective inhibitor of MMP-2 and -3. These selective TIMP variants may provide useful tools for investigation of biological roles of specific MMPs and for possible therapy of MMP-related diseases.  相似文献   

17.
Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.  相似文献   

18.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

19.
The proteolytic activity of matrix metalloproteinases (MMPs) towards extracellular matrix components is held in check by the tissue inhibitors of metalloproteinases (TIMPs). The binary complex of TIMP-2 and membrane-type-1 MMP (MT1-MMP) forms a cell surface located ''receptor'' involved in pro-MMP-2 activation. We have solved the 2.75 A crystal structure of the complex between the catalytic domain of human MT1-MMP (cdMT1-MMP) and bovine TIMP-2. In comparison with our previously determined MMP-3-TIMP-1 complex, both proteins are considerably tilted to one another and show new features. CdMT1-MMP, apart from exhibiting the classical MMP fold, displays two large insertions remote from the active-site cleft that might be important for interaction with macromolecular substrates. The TIMP-2 polypeptide chain, as in TIMP-1, folds into a continuous wedge; the A-B edge loop is much more elongated and tilted, however, wrapping around the S-loop and the beta-sheet rim of the MT1-MMP. In addition, both C-terminal edge loops make more interactions with the target enzyme. The C-terminal acidic tail of TIMP-2 is disordered but might adopt a defined structure upon binding to pro-MMP-2; the Ser2 side-chain of TIMP-2 extends into the voluminous S1'' specificity pocket of cdMT1-MMP, with its Ogamma pointing towards the carboxylate of the catalytic Glu240. The lower affinity of TIMP-1 for MT1-MMP compared with TIMP-2 might be explained by a reduced number of favourable interactions.  相似文献   

20.
To test the hypothesis that Helicobacter pylori regulates gastric cell secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), culture media from infected and uninfected human gastric adenocarcinoma (AGS) cells were analyzed by zymography, MMP activity assays, and immunoblotting. AGS cells secreted gelatinolytic (prominently 90 kDa) and caseinolytic (110 kDa) activity together with MMP-1, MMP-3, and TIMP-1, TIMP-2, and TIMP-3 isoforms. H. pylori secreted caseinolytic activity (60 kDa), MMP-3-like enzyme activity, and TIMP-3 immunoreactivity. H. pylori infection increased the 110-kDa caseinolytic activity and induced new gelatinolytic (~35 kDa) and caseinolytic (22 kDa) activities. Infection also increased both basal secretion and activation of MMP-1 and MMP-3, enhanced TIMP-3 secretion, and increased the formation of MMP-3/TIMP-3 complexes. TIMP-1 and TIMP-2 secretion were unchanged. Normal AGS cells showed a pancellular distribution of TIMP-3, with redistribution of immunoreactivity toward sites of bacterial attachment after H. pylori infection. The data indicate that MMP and TIMP secretion by AGS cells is modulated by H. pylori infection and that host MMP-3 and a TIMP-3 homolog expressed by H. pylori mediate at least part of the host cell response to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号