首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca2+ sensitivity and cardiomyocyte contractility without changes in intracellular Ca2+ transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.  相似文献   

2.
Conserved Asp-137 imparts flexibility to tropomyosin and affects function   总被引:1,自引:0,他引:1  
Tropomyosin (Tm) is an alpha-helical coiled-coil that controls muscle contraction by sterically regulating the myosin-actin interaction. Tm moves between three states on F-actin as either a uniform or a non-uniform semi-flexible rod. Tm is stabilized by hydrophobic residues in the "a" and "d" positions of the heptad repeat. The highly conserved Asp-137 is unusual in that it introduces a negative charge on each chain in a position typically occupied by hydrophobic residues. The occurrence of two charged residues in the hydrophobic region is expected to destabilize the region and impart flexibility. To determine whether this region is unstable, we have substituted hydrophobic Leu for Asp-137 and studied changes in Tm susceptibility to limited proteolysis by trypsin and changes in regulation. We found that native and Tm controls that contain Asp-137 were readily cleaved at Arg-133 with t 1/2 of 5 min. In contrast, the Leu-137 mutant was not cleaved under the same conditions. Actin stabilized Tm, causing a 10-fold reduction in the rate of cleavage at Arg-133. The actin-myosin subfragment S1 ATPase activity was greater for the Leu mutant compared with controls in the absence of troponin and in the presence of troponin and Ca2+. We conclude that the highly conserved Asp-137 destabilizes the middle of Tm, resulting in a more flexible region that is important for the cooperative activation of the thin filament by myosin. We thus have shown a link between the dynamic properties of Tm and its function.  相似文献   

3.
Tm (tropomyosin) is an evolutionarily conserved α-helical coiled-coil protein, dimers of which form end-to-end polymers capable of associating with and stabilizing actin filaments, and regulating myosin function. The fission yeast Schizosaccharomyces pombe possesses a single essential Tm, Cdc8, which can be acetylated on its N-terminal methionine residue to increase its affinity for actin and enhance its ability to regulate myosin function. We have designed and generated a number of novel Cdc8 mutant proteins with N-terminal substitutions to explore how stability of the Cdc8 overlap region affects the regulatory function of this Tm. By correlating the stability of each protein, its propensity to form stable polymers, its ability to associate with actin and to regulate myosin, we have shown that the stability of the N-terminal of the Cdc8 α-helix is crucial for Tm function. In addition we have identified a novel Cdc8 mutant with increased N-terminal stability, dimers of which are capable of forming Tm polymers significantly longer than the wild-type protein. This protein had a reduced affinity for actin with respect to wild-type, and was unable to regulate actomyosin interactions. The results of the present paper are consistent with acetylation providing a mechanism for modulating the formation and stability of Cdc8 polymers within the fission yeast cell. The data also provide evidence for a mechanism in which Tm dimers form end-to-end polymers on the actin filament, consistent with a co-operative model for Tm binding to actin.  相似文献   

4.
The solution conformation of the antibiotic peptide alamethicin was investigated using multi-nuclear spectroscopy and the distance geometry/simulated annealing algorithms from the program DSPACE. 1H-, 13C-, and 15N-nmr chemical shifts and homonuclear 1H coupling constants suggest that the molecule is flexible in the vicinity of Gly-11 and Leu-12. The temperature dependence of the amide proton chemical shifts indicates that there is flexibility in the middle of the 20 residue peptide and provides evidence that, at the very N-terminus, the molecule adopts a 310-helical conformation. The large differences in the 13C chemical shifts of the pro-R and pro-S methyls of the α-aminoisobutyric acid residues were used to constrain those residues to the right-handed helical conformation in the distance geometry/simulated annealing algorithms. A family of 24 structures was generated but did not converge to a common conformation when superimposed over the entire polypeptide sequence. The molecules did converge to a helical conformation over residues 1–10 and residues 13–18. The lack of convergence when the entire lengths of the molecules are superimposed is explained by the flexibility of the peptide near Gly-11/Leu-12. The results suggest that the protein consists of two helices connected by a flexible “hinge.” The flexibility of the molecule is discussed with respect to the macrodipole model of voltage gating. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Tropomyosin (Tm) is a two-stranded α-helical coiled-coil protein, and when associated with troponin, it is responsible for the actin filament-based regulation of muscle contraction in vertebrate skeletal and cardiac muscles. It is widely believed that Tm adopts a flexible rod-like structure in which the flexibility must play a crucial role in its functions. To obtain more information about the flexibility of Tm, we solved and compared two crystal structures of the identical C-terminal segments, spanning ∼40% of the entire length. We also compared these structures with our previously reported crystal structure of an almost identical Tm segment in a distinct crystal form. The parameters specifying the local coiled-coil geometry, such as the separation between two helices and the local helical pitch, undulate along the length of Tm in the same way as among the three crystal structures, indicating that these parameters are defined by the amino acid sequence. In the region of increased separation, around Glu-218 and Gln-263, the hydrophobic core is disrupted by three holes. Moreover, for the first time to our knowledge, for Tm, water molecules have been identified in these holes. In some structures, the B-factors are higher around the holes than in the rest of the molecule. The Tm coiled-coil must be destabilized and therefore may be flexible, not only in the alanine clusters but also in the regions of the broken core. A closer look at the local staggering between the two chains and the local bending revealed that the strain accumulates at the alanine cluster and may be relaxed in the broken core region. Moreover, the strain is distributed over a long range, even when a deformation like bending may occur at a limited number of spots. Thus, Tm should not be regarded as a train of short rigid rods connected by flexible linkers, but rather as a seamless rubber rod patched with relatively more flexible regions.  相似文献   

6.
To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides. These overlap complexes are distinctly curved, much more so than elsewhere along the superhelical tropomyosin cable. To verify whether the non-native protein adducts (needed to stabilize the coiled-coil chimeras) perturb the overlap, we carried out Molecular Dynamics simulations of head-to-tail structures having only native tropomyosin sequences. We observe that the splayed chains all refold and become helical. Significantly, the curvature of both the smooth and the striated muscle overlap domain is reduced and becomes comparable to that of the rest of the tropomyosin cable. Moreover, the measured flexibility across the junction is small. This and the reduced curvature ensure that the super-helical cable matches the contours of F-actin without manifesting localized kinking and excessive flexibility, thus enabling the high degree of cooperativity in the regulation of myosin accessibility to actin filaments.  相似文献   

7.
A constriction formed by the crossing of the second transmembrane domains of ASIC1, residues G432 to G436, forms the narrowest segment of the pore in the crystal structure of chicken ASIC1, presumably in the desensitized state, suggesting that it constitutes the "desensitization gate" and the "selectivity filter." Residues Gly-432 and Asp-433 occlude the pore, preventing the passage of ions from the extracellular side. Here, we examined the role of Asp-433 and Gly-432 in channel kinetics, ion selectivity, conductance, and Ca(2+) block in lamprey ASIC1 that is a channel with little intrinsic desensitization in the pH range of maximal activity, pH 7.0. The results show that the duration of open times depends on residue 433, with Asp supporting the longest openings followed by Glu, Gln, or Asn, whereas other residues keep the channel closed. This is consistent with residue Asp-433 forming the pore's closing gate and the properties of the side chain either stabilizing (hydrophobic amino acids) or destabilizing (Asp) the gate. The data also show residue 432 influencing the duration of openings, but here only Gly and Ala support long openings, whereas all other residues keep channels closed. The negative charge of Asp-433 was not required for block of the open pore by Ca(2+) or for determining ion selectivity and unitary conductance. We conclude that the conserved residue Asp-433 forms the closing gate of the pore and thereby determines the duration of individual openings while desensitization, defined as the permanent closure of all or a fraction of channels by the continual presence of H(+), modulates the on or off position of the closing gate. The latter effect depends on less conserved regions of the channel, such as TM1 and the extracellular domain. The constriction made by Asp-433 and Gly-432 does not select for ions in the open conformation, implying that the closing gate and selectivity filter are separate structural elements in the ion pathway of ASIC1. The results also predict a significantly different conformation of TM2 in the open state that relieves the constriction made by TM2, allowing the passage of ions unimpeded by the side chain of Asp-433.  相似文献   

8.
Tropomyosin (Tm) is an actin-binding, thin filament, two-stranded α-helical coiled-coil critical for muscle contraction and cytoskeletal function. We made the first identification of a stability control region (SCR), residues 97–118, in the Tm sequence that controls overall protein stability but is not required for folding. We also showed that the individual α-helical strands of the coiled-coil are stabilized by Leu-110, whereas the hydrophobic core is destabilized in the SCR by Ala residues at three consecutive d positions. Our hypothesis is that the stabilization of the individual α-helices provides an optimum stability and allows functionally beneficial dynamic motion between the α-helices that is critical for the transmission of stabilizing information along the coiled-coil from the SCR. We prepared three recombinant (rat) Tm(1–131) proteins, including the wild type sequence, a destabilizing mutation L110A, and a stabilizing mutation A109L. These proteins were evaluated by circular dichroism (CD) and differential scanning calorimetry. The single mutation L110A destabilizes the entire Tm(1–131) molecule, showing that the effect of this mutation is transmitted 165 Å along the coiled-coil in the N-terminal direction. The single mutation A109L prevents the SCR from transmitting stabilizing information and separates the coiled-coil into two domains, one that is ∼9 °C more stable than wild type and one that is ∼16 °C less stable. We know of no other example of the substitution of a stabilizing Leu residue in a coiled-coil hydrophobic core position d that causes this dramatic effect. We demonstrate the importance of the SCR in controlling and transmitting the stability signal along this rodlike molecule.  相似文献   

9.
The effects of the D137L/G126R double mutation in the central part of the tropomyosin α-chain via the simultaneous replacement of two highly conserved non-canonical residues, viz., Asp137 and Gly126, by canonical residues Leu and Arg, respectively, on the properties of the αβ-tropomyosin heterodimer have been studied. It has been shown using circular dichroism that this mutation substantially increases the thermal stability of αβ-tropomyosin heterodimers, which, nevertheless, remains lower than that of αα-tropomyosin homodimers with these mutations in both α-chains. The stability of tropomyosin complexes with F-actin has also been studied by measuring the temperature dependences of their dissociation, which is detected by a decrease in light scattering. It has been revealed that αβ-tropomyosin heterodimers carrying the D137L/G126R mutation in the α-chain dissociate from the surface of actin filaments at a higher temperature than ββ-homodimers but at a lower temperature than αα-homodimers with these mutations in both α-chains. It has also been shown using the in vitro motility assay that D137L/G126R substitution in the α-chain increases the sliding velocity of regulated actin filaments in the case of αα-homodimers, while it noticeably decreases the velocity in the case of αβ-tropomyosin heterodimers. Thus, we can conclude that mutations in one of the chains of the tropomyosin dimeric molecule may have different effects on the properties of tropomyosin homodimers and heterodimers.  相似文献   

10.
Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment.  相似文献   

11.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

12.
Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the human kinesin-1 stalk. The stabilizing effect was retained in a NcKinW384F mutant, suggesting important pi-stacking interactions. Without the stalk, W384 was not sufficient to induce coiled-coil formation, indicating that W384 is part of a cluster of several residues required for neck coiled-coil folding. A W384-less chimera of NcKin and human kinesin possessed a non-coiled-coil neck conformation and showed inhibited activity that could be reactivated when artificial interstrand disulfide bonds were used to stabilize the neck coiled-coil conformation. On the basis of yeast two-hybrid data, we propose that the proximal hinge can bind kinesin's cargo-free tail domain and causes inactivation of kinesin by disrupting the neck coiled-coil conformation.  相似文献   

13.
IntroductionIt is widely accepted that ion-pair increases rigidity and thermostability. There are numerous studies on ion-pairs and thermostability, but none are available about the effect of ion-pair on the activity of enzymes. This paper studies whether an ion-pair allows flexible movement in an enzyme molecule and affects its activity.Materials and methodsIon-pairs are designed at the α-helix region of a Bacillus circulans xylanase, and they are far from the active-sites (23.85–25.15 Å). Two ion-pairing mutations are situated at the C-terminus (D151/E151-K154 ion-pairs) of the helix. One mutation is double-site (F48R-N151D), which introduces both the tertiary (R48-D151) and intra-helical (D151-K154) ion-pairs.Results and discussionAll of the mutants enhanced the catalytic efficiency against xylan (1.66–3.58 times). The double-site mutation showed a synergistic effect on the activity. Overall, the ion-pairs decreased the flexibility (increased rigidity) of the α-helix region and increased the active-site flexibility. The ion-pairs were destabilizing and surface-located; this means that the weaker destabilizing ion-pair still allows flexible movement in the active-site. There is higher mobility of the strand B4 where the active site residue E172 is located. Moreover, the residues lining the active-site cleft (strand B8) showed increased flexibility upon substrate binding.ConclusionIncrease in the activity was due to the increase in active-site flexibility and increased mobility of the residues lining the active-site cleft (strand B8).  相似文献   

14.
The three-dimensional structures of the two peptides, PlnJ and PlnK, that constitutes the two-peptide bacteriocin plantaricin JK have been solved in water/TFE and water/DPC-micellar solutions using nuclear magnetic resonance (NMR) spectroscopy. PlnJ, a 25 residue peptide, has an N-terminal amphiphilic α-helix between Trp-3 and Tyr-15. The 32 residues long PlnK forms a central amphiphilic α-helix between Gly-9 and Leu-24. Measurements of the effect on anti-microbial activity of single glycine replacements in PlnJ and PlnK show that Gly-13 and Gly-17 in both peptides are very sensitive, giving more than a 100-fold reduction in activity when large residues replace glycine. In variants where other glycine residues, Gly-20 in PlnJ and Gly-7, Gly-9, Gly-24 and Gly-25 in PlnK, were replaced, the activity was reduced less than 10-fold. It is proposed that the detrimental effect on activity when exchanging Gly-13 and Gly-17 in PlnJ and PlnK is a result of reduced ability of the two peptides to interact through the GxxxG-motifs constituting Gly-13 and Gly-17.  相似文献   

15.
The structure of the mutant of bacteriophage T4 lysozyme in which Gly-156 is replaced by aspartic acid is described. The lysozyme was isolated by screening for temperature-sensitive mutants and has a melting temperature at pH 6.5 that is 6.1 degrees C lower than wild type. The mutant structure is destabilized, in part, because Gly-156 has conformational angles (phi, psi) that are not optimal for a residue with a beta-carbon. High resolution crystallographic refinement of the mutant structure (R = 17.7% at 1.7 A resolution) shows that the Gly----Asp substitution does not significantly alter the configurational angles (phi, psi) but forces the backbone to move, as a whole, approximately 0.6 A away from its position in wild-type lysozyme. This induced strain weakens a hydrogen bond network that exists in the wild-type structure and also contributes to the reduced stability of the mutant lysozyme. The introduction of an acidic side chain reduces the overall charge on the molecule and thereby tends to increase the stability of the mutant structure relative to wild type. However, at neutral pH this generalized electrostatic stabilization is offset by specific electrostatic repulsion between Asp-156 and Asp-92. The activity of the mutant lysozyme is approximately 50% that of wild-type lysozyme. This reduction in activity might be due to introduction of a negative charge and/or perturbation of the surface of the molecule in the region that is assumed to interact with peptidoglycan substrates.  相似文献   

16.
The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS) domain (residues 26-135) as well as an amphipathic α-helix (residues 13-23) and an initial unstructured segment (residues 2-9). Deletion of residues 2-25, only the unstructured segment (residues 2-9) or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.  相似文献   

17.
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved α-sarcin loop of large rRNAs. They have received attention in biological and biomedical research because of their unique biological activities toward animals and human cells as cell-killing agents. A better understanding of the depurination mechanism of RIPs could allow us to develop potent neutralizing antibodies and to design efficient immunotoxins for clinical use. Among these RIPs, ricin exhibited remarkable efficacy in depurination activity and highly conserved tertiary structure with other RIPs. It can be considered as a prototype to investigate the depurination mechanism of RIPs. In the present study, we successfully identified a novel functional domain responsible for controlling the depurination activity of ricin, which is located far from the enzymatic active site reported previously. Our study indicated that ricin A-chain mAbs binding to this domain (an α-helix comprising the residues 99-106) exhibited an unusual potent neutralizing ability against ricin in vivo. To further investigate the potential role of the α-helix in regulating the catalytic activity of ricin, ricin A-chain variants with different flexibility of the α-helix were rationally designed. Our data clearly demonstrated that the flexibility of the α-helix is responsible for controlling the depurination activity of ricin and determining the extent of protein synthesis inhibition, suggesting that the conserved α-helix might be considered as a potential target for the prevention and treatment of RIP poisoning.  相似文献   

18.
In human glutathione transferase P1-1 (hGSTP1-1) position 146 is occupied by a glycine residue, which is located in a bend of a long loop that together with the alpha6-helix forms a substructure (GST motif II) maintained in all soluble GSTs. In the present study G146A and G146V mutants were generated by site-directed mutagenesis in order to investigate the function played by this conserved residue in folding and stability of hGSTP1-1. Crystallographic analysis of the G146V variant, expressed at the permissive temperature of 25 degrees C, indicates that the mutation causes a substantial change of the backbone conformation because of steric hindrance. Stability measurements indicate that this mutant is inactivated at a temperature as low as 32 degrees C. The structure of the G146A mutant is identical to that of the wild type with the mutated residue having main-chain bond angles in a high energy region of the Ramachandran plot. However even this Gly --> Ala substitution inactivates the enzyme at 37 degrees C. Thermodynamic analysis of all variants confirms, together with previous findings, the critical role played by GST motif II for overall protein stability. Analysis of reactivation in vitro indicates that any mutation of Gly-146 alters the folding pathway by favoring aggregation at 37 degrees C. It is hypothesized that the GST motif II is involved in the nucleation mechanism of the protein and that the substitution of Gly-146 alters this transient substructure. Gly-146 is part of the buried local sequence GXXh(T/S)XXDh (X is any residue and h is a hydrophobic residue), conserved in all GSTs and related proteins that seems to behave as a characteristic structural module important for protein folding and stability.  相似文献   

19.
The signal-transducing kinase/phosphatase nitrogen regulator II (NRII or NtrB) is required for the efficient positive and negative regulation of glnA, encoding glutamine synthetase, and the Ntr regulon in response to the availability of ammonia. Alteration of highly conserved residues within the kinase/phosphatase domain of NRII revealed that the positive and negative regulatory functions of NRII could be genetically separated and that negative regulation by NRII did not require the highly conserved His-139, Glu-140, Asn-248, Asp-287, Gly-289, Gly-291, Gly-313, or Gly-315 residue. These mutations affected the positive regulatory function of NRII to various extents. Certain substitutions at codons 139 and 140 resulted in mutant NRII proteins that were transdominant negative regulators of glnA and the Ntr regulon even in the absence of nitrogen limitation. In addition, we examined three small deletions near the 3' end of the gene encoding NRII; these resulted in altered proteins that retained the negative regulatory function but were defective to various extents in the positive regulatory function. A truncated NRII protein missing the C-terminal 59 codons because of a nonsense mutation at codon 291 lacked entirely the positive regulatory function but was a negative regulator of glnA even in the absence of nitrogen limitation. Thus, we have identified both point and deletion mutations that convert NRII into a negative regulator of glnA and the Ntr regulon irrespective of the nitrogen status of the cell.  相似文献   

20.
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号