首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.  相似文献   

2.
Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100?µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice.

Highlights: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.  相似文献   

3.
Molecular mechanisms of the mammalian circadian clock have been studied primarily by genetic perturbation and behavioral analysis. Here, we used bioluminescence imaging to monitor Per2 gene expression in tissues and cells from clock mutant mice. We discovered that Per1 and Cry1 are required for sustained rhythms in peripheral tissues and cells, and in neurons dissociated from the suprachiasmatic nuclei (SCN). Per2 is also required for sustained rhythms, whereas Cry2 and Per3 deficiencies cause only period length defects. However, oscillator network interactions in the SCN can compensate for Per1 or Cry1 deficiency, preserving sustained rhythmicity in mutant SCN slices and behavior. Thus, behavior does not necessarily reflect cell-autonomous clock phenotypes. Our studies reveal previously unappreciated requirements for Per1, Per2, and Cry1 in sustaining cellular circadian rhythmicity and demonstrate that SCN intercellular coupling is essential not only to synchronize component cellular oscillators but also for robustness against genetic perturbations.  相似文献   

4.
One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light–dark 16:8) and short-day (light–dark 8:16) photoperiods and membrane properties as well as K+ currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K+ current, that is, the circadian modulation of this ion channel’s activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K+ currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment.  相似文献   

5.
6.
Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.  相似文献   

7.
The proinflammatory cytokine interferon (IFN-gamma) is an immunomodulatory molecule released by immune cells. It was originally described as an antiviral agent but can also affect functions in the nervous system including circadian activity of the principal mammalian circadian pacemaker, the suprachiasmatic nucleus. IFN-gamma and the synergistically acting cytokine tumor necrosis factor-alpha acutely decrease spontaneous excitatory postsynaptic activity and alter spiking activity in tissue preparations of the SCN. Because IFN-gamma can be released chronically during infections, the authors studied the long-term effects of IFN-gamma on SCN neurons by treating dispersed rat SCN cultures with IFN-gamma over a 4-week period. They analyzed the effect of the treatment on the spontaneous spiking pattern and rhythmic expression of the "clock gene," Period 1. They found that cytokine-treated cells exhibited a lower average spiking frequency and displayed a more irregular firing pattern when compared with controls. Furthermore, long-term treatment with IFN-gamma in cultures obtained from a transgenic Per1-luciferase rat significantly reduced the Per1-luc rhythm amplitude in individual SCN neurons. These results show that IFN-gamma can alter the electrical properties and circadian clock gene expression in SCN neurons. The authors hypothesize that IFN-gamma can modulate circadian output, which may be associated with sleep and rhythm disturbances observed in certain infections and in aging.  相似文献   

8.
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.  相似文献   

9.
Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.  相似文献   

10.
11.

Background

Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.

Methodology/Principal Findings

Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.

Conclusions/Significance

Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock.  相似文献   

12.
13.
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.  相似文献   

14.
15.
16.
The mammalian circadian clock is known to be entrained by both a daily light-dark cycle and daily feeding cycle. However, the mechanisms of feeding-induced entrainment are not as fully understood as those of light entrainment. To elucidate the first step of entrainment of the liver clock, we identified the circadian clock gene(s) that show both phase advance and acute change of gene expression during the early term of the daytime refeeding schedule in mice. The expressions of liver Per2 and Rev-erbα genes were phase-advanced within 1 day of refeeding. Additionally, the upregulation of Per2 mRNA and down-regulation of Rev-erbα mRNA were induced within 2 hours, not only by food intake but also by insulin injection in intact mice. These expression changes by food intake were not revealed in streptozotocin-treated insulin-deficient mice, but insulin injection was able to recover the impairment of Per2 and Rev-erbα gene expression. Furthermore, we demonstrated using an ex vivo luciferase monitoring system that insulin injection during the daytime causes a phase advance of liver Per2 expression rhythm in Per2::luciferase knock-in mice. In embryonic fibroblasts from Per2::luciferase knock-in mice, insulin infusion caused an acute increase of Per2 gene expression and a similar phase advance of Per2 expression rhythm. Our results indicate that an acute change of Per2 and Rev-erbα gene expression mediated by refeeding-induced insulin secretion is a critical step mediating the early phase of feeding-induced entrainment of the liver clock.  相似文献   

17.
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.  相似文献   

18.
Although caffeine alters sleep in many animals, whether or not it affects mammalian circadian clocks remains unknown. Here, we found that incubating cultured mammalian cell lines, human osteosarcoma U2OS cells and mouse fibroblast NIH3T3 cells, with caffeine lengthened the period of circadian rhythms. Adding caffeine to ex vivo cultures also lengthened the circadian period in mouse liver explants from Per2::Luciferase reporter gene knockin mice, and caused a phase delay in brain slices containing the suprachiasmatic nucleus (SCN), where the central circadian clock in mammals is located. Furthermore, chronic caffeine consumption ad libitum for a week delayed the phase of the mouse liver clock in vivo under 12 h light–dark conditions and lengthened the period of circadian locomotor rhythms in mice under constant darkness. Our results showed that caffeine alters circadian clocks in mammalian cells in vitro and in the mouse ex vivo and in vivo.  相似文献   

19.
Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian clock genes within the suprachiasmatic nucleus (SCN), the location of the master circadian clock in the mammalian brain. Excitatory synaptic transmission leads to an increase in the postsynaptic Ca2+ concentration that is believed to activate the signaling pathways that shifts the rhythmic expression of circadian clock genes. Hypothalamic slices containing the SCN were patch clamped using microelectrodes filled with an internal solution containing the calcium indicator bis-fura-2. After a seal was formed between the microelectrode and the SCN neuronal membrane, the membrane was ruptured using gentle suction and the calcium probe diffused into the neuron filling both the soma and dendrites. Quantitative ratiometric measurements of the intracellular calcium concentration were recorded simultaneously with membrane potential or current. Using these methods it is possible to study the role of changes of the intracellular calcium concentration produced by synaptic activity and action potential firing of individual neurons. In this presentation we demonstrate the methods to simultaneously record electrophysiological activity along with intracellular calcium from individual SCN neurons maintained in brain slices.  相似文献   

20.
To examine roles of the Cryptochromes (Cry1 and Cry2) in mammalian circadian photoreception, we recorded single-unit neuronal firing activity in the suprachiasmatic nucleus (SCN), a primary circadian oscillator, and optic nerve fibers in vivo after retinal illumination in anesthetized Cry1 and Cry2 double-knockout (Cry-deficient) mice. In wild-type mice, most SCN neurons increased their firing frequency in response to retinal illumination at night, whereas only 17% of SCN neurons responded during the daytime. However, 40% of SCN neurons responded to light during the daytime, and 31% of SCN neurons responded at night in Cry-deficient mice. The magnitude of the photic response in SCN neurons at night was significantly lower (1.3-fold of spontaneous firing) in Cry-deficient mice than in wild-type mice (4.0-fold of spontaneous firing). In the optic nerve near the SCN, no difference in the proportion of light-responsive fibers was observed between daytime and nighttime in both genotypes. However, the response magnitude in the light-activated fibers (ON fibers) was high during the nighttime and low during the daytime in wild-type mice, whereas this day-night difference was not observed in Cry-deficient mice. In addition, we observed day-night differences in the spontaneous firing rates in the SCN in both genotypes and in the fibers of wild-type, but not Cry-deficient mice. We conclude that the low photo response in the SCN of Cry-deficient mice is caused by a circadian gating defect in the retina, suggesting that Cryptochromes are required for appropriate temporal photoreception in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号