首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arpin is an Arp2/3 inhibitory protein, which decreases the protrusion lifetime and hence directional persistence in the migration of diverse cells. Arpin is activated by the small GTPase Rac, which controls cell protrusion, thus closing a negative feedback loop that renders the protrusion intrinsically unstable. Because of these properties, it was proposed that Arpin might play a role in directed migration, where directional persistence has to be fine‐tuned. We report here, however, that Arpin‐depleted tumour cells and Arpin knock‐out Dictyostelium amoeba display no obvious defect in chemotaxis. These results do not rule out a potential role of Arpin in other systems, but argue against a general role of Arpin in chemotaxis.  相似文献   

2.
The roles of JSAP1 and JIP1 in cell adhesion and spreading were examined using mouse embryonic fibroblasts (MEFs) deficient in JIP1 (JIP1-KO), JSAP1 (JSAP1-KO), and in both JIP1 and JSAP1 (double-KO), and by using their wild type. After being plated on fibronectin-coated culture plates, wild type MEFs rapidly adhered and differentiated to typical longitudinal fibroblasts in 4 h. JSAP1-KO MEFs showed a similar sequence of adhesion and cell spreading, but their adhesion was weak, and cell spreading sequence proceeded in a delayed manner compared with the wild type. In spreading JSAP1-KO MEFs, adhesion-triggered actin cytoskeleton reorganization and FAK activation proceeded at a slower pace than in wild type MEFs. The cellular properties of double-KO MEFs and JIP1-KO MEFs were similar to those of JSAP1-KO MEFs and wild type MEFs, respectively. These results suggest that JSAP1 plays a role in adhesion and cell spreading by regulating the rapid reorganization of the actin cytoskeleton.  相似文献   

3.
Calyculin A (CL-A), a toxin isolated from the marine sponge Discodermia calyx, is a strong inhibitor of protein phosphatase 1 (PP1) and 2A (PP2A). Although CL-A is known to induce rapid neurite retraction in developing neurons, the cytoskeletal dynamics of this retraction have remained unclear. Here, we investigated the cytoskeletal dynamics during CL-A-induced neurite retraction in cultured rat hippocampal neurons, using fluorescence microscopy as well as polarized light microscopy, which can visualize the polymerization state of the cytoskeleton in living cells. We observed that MTs were bent while maintaining their polymerization state during the neurite retraction. In addition, we also found that CL-A still induced neurite retraction when MTs were depolymerized by nocodazole or stabilized by paclitaxel. These results imply a mechanism other than depolymerization of MTs for CL-A-induced neurite retraction. Our pharmacological studies showed that blebbistatin and cytochalasin D, an inhibitor of myosin II and a depolymerizer of actin, strongly inhibited CL-A-induced neurite retraction. Based on all these findings, we propose that CL-A generates strong contractile forces by actomyosin to induce rapid neurite retraction independently from MT depolymerization.  相似文献   

4.
Small ubiquitin-like modifier (SUMO1–3) conjugation plays a critical role in embryogenesis. Embryos deficient in the SUMO-conjugating enzyme Ubc9 die at the early postimplantation stage. Sumo1−/− mice are viable, as SUMO2/3 can compensate for most SUMO1 functions. To uncover the role of SUMO2/3 in embryogenesis, we generated Sumo2- and Sumo3-null mutant mice. Here, we report that Sumo3−/− mice were viable, while Sumo2−/− embryos exhibited severe developmental delay and died at approximately embryonic day 10.5 (E10.5). We also provide evidence that SUMO2 is the predominantly expressed SUMO isoform. Furthermore, although Sumo2+/− and Sumo2+/−;Sumo3+/− mice lacked any overt phenotype, only 2 Sumo2+/−;Sumo3−/− mice were found at birth in 35 litters after crossing Sumo2+/−;Sumo3+/− with Sumo3−/− mice, and these rare mice were considerably smaller than littermates of the other genotypes. Thus, our findings suggest that expression levels and not functional differences between SUMO2 and SUMO3 are critical for normal embryogenesis.  相似文献   

5.
Nakano K  Arai R  Mabuchi I 《FEBS letters》2005,579(23):5181-5186
The small GTPase Rho1 plays an essential role in controlling the organization of the actin cytoskeleton and synthesis of the cell wall in the fission yeast Schizosaccharomyces pombe. Here we studied the role of Rho5 whose primary structure is very similar to that of Rho1. It was found that elevated expression of Rho5 was able to compensate for the lethality of cells lacking Rho1. Rho5 was localized to the ends of interphase cells and the mid-region of mitotic cells. Overexpression of Rho5 caused depolarization of F-actin patches and abnormal formation of the cell wall, as did Rho1. Although rho5(+) was not essential for maintaining the cell shape, rho1 rho5-double null cells showed more severe defects in cell viability than rho1-null cells. Thus, it is likely that Rho5 has an overlapping function with Rho1 in controlling cell growth and division in S. pombe.  相似文献   

6.
Kinetochore dynein has been implicated in microtubule capture, correcting inappropriate microtubule attachments, chromosome movement, and checkpoint silencing. It remains unclear how dynein coordinates this diverse set of functions. Phosphorylation is responsible for some dynein heterogeneity (Whyte, J., Bader, J. R., Tauhata, S. B., Raycroft, M., Hornick, J., Pfister, K. K., Lane, W. S., Chan, G. K., Hinchcliffe, E. H., Vaughan, P. S., and Vaughan, K. T. (2008) J. Cell Biol. 183, 819-834), and phosphorylated and dephosphorylated forms of dynein coexist at prometaphase kinetochores. In this study, we measured the impact of inhibiting polo-like kinase 1 (Plk1) on both dynein populations. Phosphorylated dynein was ablated at kinetochores after inhibiting Plk1 with a small molecule inhibitor (5-Cyano-7-nitro-2-(benzothiazolo-N-oxide)-carboxamide) or chemical genetic approaches. The total complement of kinetochore dynein was also reduced but not eliminated, reflecting the presence of some dephosphorylated dynein after Plk1 inhibition. Although Plk1 inhibition had a profound effect on dynein, kinetochore populations of dynactin, spindly, and zw10 were not reduced. Plk1-independent dynein was reduced after p150(Glued) depletion, consistent with the binding of dephosphorylated dynein to dynactin. Plk1 phosphorylated dynein intermediate chains at Thr-89 in vitro and generated the phospho-Thr-89 phospho-epitope on recombinant dynein intermediate chains. Finally, inhibition of Plk1 induced defects in microtubule capture and persistent microtubule attachment, suggesting a role for phosphorylated dynein in these functions during prometaphase. These findings suggest that Plk1 is a dynein kinase required for recruitment of phosphorylated dynein to kinetochores.  相似文献   

7.
Here we used RNA interference and examined possible redundancy amongst Rho GTPases in their mitotic role. Chromosome misalignment is induced significantly in HeLa cells by Cdc42 depletion and not by depletion of either one or all of the other four Cdc42-like GTPases (TC10, TCL, Wrch1 or Wrch2), four Rac-like GTPases or three Rho-like GTPases. Notably, combined depletion of Cdc42 and all of the other four Cdc42-like GTPases significantly enhances chromosomal misalignment. These observations suggest that Cdc42 is the primary GTPase functioning during mitosis but that the other four Cdc42-like GTPases can also assume the mitotic role in its absence.  相似文献   

8.
Robinson RW  Snyder JA 《Protoplasma》2005,225(1-2):113-122
Summary. The enzymes of importance in moving chromosomes are called motor proteins and include dynein, kinesin, and possibly myosin II. These three molecules are all included in the category of ATPases, in that they have the ability to convert chemical energy into mechanical energy. Both dynein and kinesin have been documented as molecules that “walk” along microtubules in the mitotic spindle, carrying cargo such as chromosomes. Myosin II, analogous to the muscle contraction system, transiently interacts along actin filaments and associates with kinetochore microtubules. In this paper we present evidence that a third ATPase, myosin II, may act as a “thruster” to propel chromosomes during the mitotic process. Double-label immunocytochemistry to actin and myosin II shows that myosin II is localized on chromosome arms at the beginning of mitosis and remains localized to the chromosomes throughout mitosis. Specific staining of myosin II is relegated to the outside of chromosomes with the highest density of staining occurring between the spindle poles and the chromosomes. This specific localization could account for the movement of chromosomes during mitosis, since they segregate towards the spindle poles, along kinetochore microtubules containing actin filaments, after aligning at the equatorial region of the cell at metaphase. We conclude from this study that there is an actomyosin system present in the mitotic spindle and that myosin is attached to chromosome arms and may act as a thruster in moving chromosomes during the mitotic process. Correspondence and reprints: Department of Biological Sciences, University of Denver, 2190 E Iliff Avenue, Denver, CO 80208, U.S.A.  相似文献   

9.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

10.
11.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

12.
INCENP, Borealin, Survivin, and Aurora B kinase comprise the chromosomal passenger complex, an essential regulator of mitotic events. INCENP (inner centromere protein) binds and activates Aurora B through a feedback loop involving phosphorylation of a Thr-Ser-Ser (TSS) motif near the INCENP C terminus. Here, we have examined the role of the TSS motif in vertebrate cells using an DT40 INCENP(ON/OFF) conditional knock-out cell line in which mutants are expressed in the absence of wild-type INCENP. Our analysis confirms that regulated phosphorylation of the two serine residues (presumably by Aurora B) is critical for full activation of the kinase and is essential for cell viability. Cells expressing INCENP mutants bearing either phospho-null (TAA) or phospho-mimetic (TEE) mutations exhibit significant levels of Aurora B kinase activity but fail to undergo normal spindle elongation or complete cytokinesis. This work confirms previous suggestions that INCENP can act as a rheostat, with different INCENP mutants promoting differing degrees of kinase activation. Our results also reveal that mitotic progression is accompanied by a requirement for progressively higher levels of Aurora B kinase activity.  相似文献   

13.
Several lines of evidence suggest that GATA6 has an integral role in controlling development of the mammalian liver. Unfortunately, this proposal has been impossible to address directly because mouse embryos lacking GATA6 die during gastrulation. Here we show that the early embryonic deficiency associated with GATA6-knockout mice can be overcome by providing GATA6-null embryos with a wild-type extraembryonic endoderm with the use of tetraploid embryo complementation. Analysis of rescued Gata6-/- embryos revealed that, although hepatic specification occurs normally, the specified cells fail to differentiate and the liver bud does not expand. Although GATA6 is expressed in multiple tissues that impact development of the liver, including the heart, septum transversum mesenchyme, and vasculature, all are relatively unaffected by loss of GATA6, which is consistent with a cell-autonomous requirement for GATA6 during hepatogenesis. We also demonstrate that a closely related GATA factor, GATA4, is expressed transiently in the prehepatic endoderm during hepatic specification and then lost during expansion of the hepatic primordium. Our data support the proposal that GATA4 and GATA6 are functionally redundant during hepatic specification but that GATA6 alone is available for liver bud growth and commitment of the endoderm to a hepatic cell fate.  相似文献   

14.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an important role in DNA double-strand break (DSB) repair as the underlying mechanism of the non-homologous end joining pathway. When DSBs occur, DNA-PKcs is rapidly phosphorylated at both the Thr-2609 and Ser-2056 residues, and such phosphorylations are critical for DSB repair. In this study we report that, in addition to responding to DSBs, DNA-PKcs is activated and phosphorylated in normal cell cycle progression through mitosis. Mitotic induction of DNA-PKcs phosphorylation is closely associated with the spindle apparatus at centrosomes and kinetochores. Furthermore, depletion of DNA-PKcs protein levels or inhibition of DNA-PKcs kinase activity results in the delay of mitotic transition because of chromosome misalignment. These results demonstrate for the first time that DNA-PKcs, in addition to its role in DSB repair, is a critical regulator of mitosis and could modulate microtubule dynamics in chromosome segregation.  相似文献   

15.
Ubiquinone (UQ) is a lipid found in most biological membranes and is a co-factor in many redox processes including the mitochondrial respiratory chain. UQ has been implicated in protection from oxidative stress and in the aging process. Consequently, it is used as a dietary supplement and to treat mitochondrial diseases. Mutants of the clk-1 gene of the nematode Caenorhabditis elegans are fertile and have an increased life span, although they do not produce UQ but instead accumulate a biosynthetic intermediate, demethoxyubiquinone (DMQ). DMQ appears capable to partially replace UQ for respiration in vivo and in vitro. We have produced a vertebrate model of cells and tissues devoid of UQ by generating a knockout mutation of the murine orthologue of clk-1 (mclk1). We find that mclk1-/- embryonic stem cells and embryos accumulate DMQ instead of UQ. As in the nematode mutant, the activity of the mitochondrial respiratory chain of -/- embryonic stem cells is only mildly affected (65% of wild-type oxygen consumption). However, mclk1-/- embryos arrest development at midgestation, although earlier developmental stages appear normal. These findings indicate that UQ is necessary for vertebrate embryonic development but suggest that mitochondrial respiration is not the function for which UQ is essential when DMQ is present.  相似文献   

16.
Centrosomes consist of a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Proteins that contain a Pericentrin/AKAP450 centrosomal targeting (PACT) domain have been implicated in recruiting several proteins to the PCM. We show that the only PACT domain protein in Drosophila (the Drosophila pericentrin-like protein [D-PLP]) is associated with both the centrioles and the PCM, and is essential for the efficient centrosomal recruitment of all six PCM components that we tested. Surprisingly, however, all six PCM components are eventually recruited to centrosomes during mitosis in d-plp mutant cells, and mitosis is not dramatically perturbed. Although viable, d-plp mutant flies are severely uncoordinated, a phenotype usually associated with defects in mechanosensory neuron function. We show that the sensory cilia of these neurons are malformed and the neurons are nonfunctional in d-plp mutants. Moreover, the flagella in mutant sperm are nonmotile. Thus, D-PLP is essential for the formation of functional cilia and flagella in flies.  相似文献   

17.
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits the growth of numerous cancer cell types. The intracellular proteins that mediate 1,25(OH)(2)D(3)-induced growth inhibition are poorly defined, although it is speculated that p21 and p27 are involved. We tested the requirement of p21 and p27 by treating primary wild-type, p21(-/-), and p27(-/-) mouse embryonic fibroblasts (MEFs) with 100 nm 1,25(OH)(2)D(3). In response to treatment, the wild-type and p21(-/-) MEFs exhibited 54 and 60% growth inhibition (p < 0.05), respectively, whereas the growth of p27(-/-) MEFs was unaffected. Western analyses indicated that p27 expression is induced by 1,25(OH)(2)D(3) treatment in wild-type and p21(-/-) MEFs. p21 expression is also induced by 1,25(OH)(2)D(3) treatment in wild-type and p27(-/-) MEFs, although the effect is less robust than for p27. Next, we spontaneously immortalized each MEF strain, which resulted in a gain of responsiveness to 1,25(OH)(2)D(3) by the p27(-/-) MEFs, as exhibited by 87% growth inhibition (p < 0.05). Both wild-type and p21(-/-) MEFs retained responsiveness (43 and 72% growth inhibition (p < 0.05), respectively). These data from primary and immortalized MEFs demonstrate that there are both p27-dependent and -independent pathways that mediate the antiproliferative action of 1,25(OH)(2)D(3).  相似文献   

18.
Vitamin E (alpha-tocopherol) was discovered 80 years ago to be an indispensable nutrient for reproduction in the female. However, it has not been clarified when or where vitamin E is required during pregnancy. We examined the role of alpha-tocopherol in pregnancy using alpha-tocopherol transfer protein (Ttpa)-deficient mice fed specific alpha-tocopherol diets that led to daily, measurable change in plasma alpha-tocopherol levels from nearly normal to almost undetectable levels. A dietary supplement of alpha-tocopherol to pregnant Ttpa-/- (homozygous null) mice was shown to be essential for maintenance of pregnancy from 6.5 to 13.5 days postcoitum but found not to be crucial before or after this time span, which corresponds to initial development and maturation of the placenta. In addition, exposure to a low alpha-tocopherol environment after initiation of placental formation might result in necrosis of placental syncytiotrophoblast cells, followed by necrosis of fetal blood vessel endothelial cells. When Ttpa(-/-)-fertilized eggs were transferred into Ttpa+/+ (wild-type) recipients, plasma alpha-tocopherol concentrations in the Ttpa-/- fetuses were below the detection limit but the fetuses grew normally. These results indicate that alpha-tocopherol is indispensable for the proliferation and/or function of the placenta but not necessary for development of the embryo itself.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号