首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Some Asian megascolecid earthworms, e.g. Amynthas agrestis and Amynthas tokioensis, are highly invasive and have only recently been reported from natural ecosystems in the northeastern USA. There, they are annual earthworms that survive the winter as cocoons (an egg in a tough covering). Hatching occurs in mid-April when temperatures rise consistently above 10 °C. In some years, winter temperatures also reach 10 °C during short warming episodes, but hatchlings then are likely to die when temperatures drop again. To test this hypothesis, soil was collected on 7 sampling dates during January–May 2016 at one site in the Champlain Valley, Vermont and extracted for the cocoons. Both hatched and unhatched cocoons were enumerated and identified to species by both size and sequencing of the mitochondrial cytochrome c oxidase I gene (COI). A regression model on the number of unhatched cocoons over time predicted that ~ a quarter (A. agrestis) and ~ a third (A. tokioensis) would hatch before mid-May; no hatchlings were observed. Thus, hatching during warming periods in winter seemingly resulted in high mortality. Such winter hatching, and loss, may increase with climate warming in the region because winter warming periods should become more common. Climate warming could therefore reduce ability of the invasive earthworms to persist in northern habitats. Conversely, rapid hatching when the soil warms in spring could have an ecological benefit by allowing opportunities to expand at the thermal edge of the range as the climate continues to warm.  相似文献   

2.
The parasitoid Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) is a promising candidate for biological control of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) in grain stores. For practical application in northern temperate regions it is important that the parasitoids can survive the cold temperatures in the grain during the winter and resume activity the following spring. In the present study the survival of Lariophagus distinguendus and Sitophilus granarius was followed during a simulated winter with stepwise reductions of temperature down to 6°C which was maintained for 15 weeks. Only 20% of the weevils were alive after eight weeks at 6°C, whereas the survival of L. distinguendus was unaffected by the temperature decrease. After being returned to room temperature an F 1 generation of the parasitoid emerged and was able to reproduce.  相似文献   

3.
The conditions of storage, cultivation and maintenance of microbial cultures should preserve the microbiological homogeneity, phenotypic and genotypic characteristics to ensure better reproducibility of metabolic production. To evaluate the influence of the storage condition on the composition of cell fatty acids, genetic profile and biochemical characteristics of Xanthomonas campestris pv. mangiferaeindicae IBSBF 2103, as well as, to identify its relationship with the yielding and viscosity of the xanthan gum produced, this study monitored the strain preserved in two simple and widely used conditions, ultra-freezer (?80 °C) and refrigeration (3–8 °C) during 5 months. Were identified and quantified 13 fatty acids. The cells preserved at ?80 °C showed more stable concentration of all fatty acids, producing more xanthan gum and with higher viscosity. The chromosomal analysis obtained with the enzyme XbaI revealed 17 distinct fragments with maximum size of 485 kilobases, without variations among the subcultures maintained in both storage conditions. The X. campestris pv. mangiferaeindicae subcultures preserved at ?80 °C showed less pronounced phenotypic variations, which had positive influence in the qualitative and quantitative characteristics of the xanthan gum produced.  相似文献   

4.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

5.
The Asian clam Corbicula fluminea, originating from Southeast Asia, was first recorded in Lake Constance in 2003 and developed local mass occurrences afterwards. Effects of harsh winter conditions in 2005/2006 associated with a strongly decreasing water level were studied at three different depths at and below the mean low water level (MLL, MLL ?1 m and MLL ?3 m). Low winter temperatures produced a massive die-off of the C. fluminea population. The mortality of the clams was size class and depth dependent. At the mean low water level (MLL), all clams died because of lying dry. However, at MLL ?1 m and at MLL ?3 m, mortality was a consequence of water temperatures around 2°C for nearly 3 months. At MLL ?3 m, clams >5 mm died later than young clams <5 mm and later than clams of all sizes at MLL ?1 m. But in late spring even the clams >5 mm at MLL ?3 m were dead and only about 1% of the overall population of C. fluminea survived the winter conditions until spring 2006.Lethal effects of low water temperatures on C. fluminea, which may become effective only after a time lag, were corroborated in an outdoor mesocosm experiment with constant water level and without predation.  相似文献   

6.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

7.
The thermal sensitivities of organisms regulate a wide range of ecological interactions, including host–parasite dynamics. The effect of temperature on disease ecology can be remarkably complex in disease systems where the hosts are ectothermic and where thermal conditions constrain pathogen reproductive rates. Amphibian chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), is a lethal fungal disease that is influenced by temperature. However, recent temperature studies have produced contradictory findings, suggesting that our current understanding of thermal effects on Bd may be incomplete. We investigated how temperature affects three different Bd strains to evaluate diversity in thermal responses. We quantified growth across the entire thermal range of Bd, and beyond the known thermal limits (T max and T min). Our results show that all Bd strains remained viable and grew following 24 h freeze (?12 °C) and heat shock (28 °C) treatments. Additionally, we found that two Bd strains had higher logistic growth rates (r) and carrying capacities (K) at the upper and lower extremities of the temperature range, and especially in low temperature conditions (2–3 °C). In contrast, a third strain exhibited relatively lower growth rates and carrying capacities at these same thermal extremes. Overall, our results suggest that there is considerable variation among Bd strains in thermal tolerance, and they establish a new thermal sensitivity profile for Bd. More generally, our findings point toward important questions concerning the mechanisms that dictate fungal thermal tolerances and temperature-dependent pathogenesis in other fungal disease systems.  相似文献   

8.
Small heat shock proteins (sHSPs) constitute a large, diverse, and functionally uncharacterized family of heat shock proteins. To gain insight regarding the function of sHSPs in insects, we identified genes encoding two sHSPs, Cshsp22.9b and Cshsp24.3, from the rice pest Chilo suppressalis. The cDNAs of Cshsp22.9b and Cshsp24.3 encoded proteins of 206 and 216 amino acids with isoelectric points of 5.79 and 9.28, respectively. Further characterization indicated that both Cshsp22.9b and Cshsp24.3 lacked introns. Real-time quantitative PCR indicated that Cshsp22.9b and Cshsp24.3 were expressed at higher levels within the fat body as compared to other tissues (head, epidermis, foregut, midgut, hindgut, Malpighian tubules, and hemocytes). Expression of Cshsp22.9b and Cshsp24.3 was lowest in the hindgut and Malpighian tubules, respectively. Cshsp22.9b and Cshsp24.3 showed identical patterns in response to thermal stress from ?11 to 43 °C, and both genes were up-regulated by hot and cold temperatures. The mRNA (messenger ribonucleic acid) expression levels of Cshsp22.9b (KY701308) and Cshsp24.3 (KY701309) were highest after a 2-h exposure at 39 °C and started to decline at 42 °C. In response to cold temperatures, both Cshsp22.9b and Cshsp24.3 showed maximal expression after a 2-h exposure to ?3 °C. The two Cshsps were more responsive to hot than cold temperature stress and were not induced by mildly cold or warm temperatures. In conclusion, Cshsp22.9b and Cshsp24.3 could play a very important role in the regulation of physiological activities in C. suppressalis that are impacted by environmental stimuli.  相似文献   

9.
The effect of five constant temperatures (16, 20, 24, 28 and 32 °C) on the development, survival and reproduction of Tetranychus cinnabarinus (Boisduval) [=?Tetranychus urticae Koch (red form)] fed on cassava leaves was examined in the laboratory at 85% relative humidity. Development time of various immature stages decreased with increasing temperature, with total egg-to-adult development time varying from 27.7 to 6.7 days. The lower thermal threshold for development was 10.8 °C and the thermal constant from egg to adult was 142.4 degree-days. Pre- and post-oviposition period and female longevity all decreased as temperature increased. The longest oviposition period was observed at 20 °C with 20.4 days. Under different temperatures, mated females laid, on average, 1.0, 2.9, 4.7, 4.7 and 4.9 eggs per day, respectively. The maximum fecundity (81.5 eggs per female) was at 28 °C and the intrinsic rate of increase (r m ) was highest (0.25) at 32 °C. The results of this study indicate that T. cinnabarinus population could increase rapidly when cassava leaves serve as a food source. At the appropriate temperature T. cinnabarinus could seriously threaten growth of cassava.  相似文献   

10.
In order to identify suitable Trichogramma strains for mass production and successful control of key lepidopteran pests in paddy fields in the Greater Mekong Subregion, the effects of high temperatures on wasp life history traits were compared among three strains of Trichogramma chilonis Ishii and two strains of Trichogramma ostriniae Pang et Chen, collected from paddy fields in the region. At a rearing temperature of 25 °C, life history traits differed significantly among the five strains tested and the three T. chilonis strains and a T. ostriniae strain were of high performance. When female wasps were exposed to higher temperatures commonly encountered in the region, negative effects were observed on key life history parameters of adult females and their offspring at 34 °C, which became even more serious at 37 °C. In particular, the two T. ostriniae strains were not able to successfully develop to adulthood at all at 37 °C while for the T. chilonis strains adult emergence was significantly reduced. In addition, the emerged offspring females lived only around one day and no parasitism was observed. When the three T. chilonis strains were exposed to 37 °C for 4 to 12 h at prepupal and pupal stages, reflecting heat shocks that the released Trichogramma may experience in the field, adult emergence was significantly reduced after an exposure time of 12 h. In summary, the three T. chilonis strains show a relatively high potential for incorporation in a biological control program in the target region. Our results also highlight that tests at both rearing and field temperatures are necessary in selection of potential Trichogramma strains for an inundative release program where there is significant difference between rearing and field temperatures.  相似文献   

11.

Objective

To examine the potential for applications of TthLAC, a monomeric (~ 53 kDa) laccase encoded by the genome of Thermus thermophilus (strain HB 27) which can be produced at low cost in Escherichia coli.

Result

Functional, thermostable and mildly alkalophilic TthLAC of high purity (> 90%) was produced through simple heating of suspended (TthLAC overexpressing) E.coli cells at 65 °C. For reactions of short duration (< 1 h) the temperature for optimal activity is ~ 90 °C. However, TthLAC undergoes slow partial unfolding and thermal inactivation above 65 °C, making it unsuitable for long incubations above this temperature. With different substrates, optimal function was observed from pH 6 to 8. With the substrate, ABTS, catalytic efficiency (K m) and maximum velocity (Vmax) at 60 °C and pH 6.0 were determined to be 2.4 × 103 µM and 0.04 × 103 µM/min respectively. Ultra-pure, affinity-purified TthLAC was used to confirm and characterize the enzyme’s ability to oxidize known (laccase) substrates such as ABTS, syringaldazine and 4-fluoro-2-methylphenol. TthLAC decoloured up to six different industrial dyes, with or without the use of redox mediators such as ABTS.

Conclusions

Unlike versatile laccases from most other sources, which tend to be thermolabile as well as acidophilic, TthLAC is a versatile, thermostable, mildly alkalophilic laccase which can be produced at low cost in E.coli for various redox applications.
  相似文献   

12.
A new strain of Chlorella sp. (Chlorella-Arc), isolated from Arctic glacier melt water, was found to have high specific growth rates (μ) between 3 and 27 °C, with a maximum specific growth rate of 0.85 day?1 at 15 °C, indicating that this strain was a eurythermal strain with a broad temperature tolerance range. To understand its acclimation strategies to low and high temperatures, the physiological and biochemical responses of the Chlorella-Arc to temperature were studied and compared with those of a temperate Chlorella pyrenoidosa strain (Chlorella-Temp). As indicated by declining F v/F m, photoinhibition occurred in Chlorella-Arc at low temperature. However, Chlorella-Arc reduced the size of the light-harvesting complex (LHC) to alleviate photoinhibition, as indicated by an increasing Chl a/b ratio with decreasing temperatures. Interestingly, Chlorella-Arc tended to secrete soluble sugar into the culture medium with increasing temperature, while its intracellular soluble sugar content did not vary with temperature changes, indicating that the algal cells might suffer from osmotic stress at high temperature, which could be adjusted by excretion of soluble sugar. Chlorella-Arc accumulated protein and lipids under lower temperatures (<15 °C), and its metabolism switched to synthesis of soluble sugar as temperatures rose. This reflects a flexible ability of Chlorella-Arc to regulate carbon and energy distribution when exposed to wide temperature shifts. More saturated fatty acids (SFA) in Chlorella-Arc than Chlorella-Temp also might serve as the energy source for growth in the cold and contribute to its cold tolerance.  相似文献   

13.
The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers found near volcanic areas in, e.g., Yellowstone National Park in the USA and in Java, Indonesia. It grows optimally at a pH between 0.5 and 3.0 and at temperatures up to 56 °C. The low pH at which C. merolae grows minimizes the risk of microbial contamination and could limit production loss. As C. merolae lacks a cell wall, phycocyanin with a high purity number of 9.9 could be extracted by an osmotic shock using a simple ultrapure water extraction followed by centrifugation. The denaturation midpoint at pH 5 was 83 °C, being considerably higher than the A. platensis phycocyanin (65 °C). The C. merolae phycocyanin was relatively stable at pH 4 and 5 up to 80 °C. The high thermostability at slightly acidic pH makes the C. merolae phycocyanin an interesting alternative to A. platensis phycocyanin as a natural blue food colorant.  相似文献   

14.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

15.
Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia sensu lato) have succumbed to the disease since the early 2000s (ca 1/3 of the pre-invasion population). In addition, numerous native shrub and tree species in the family are susceptible and  threatened in the Western Hemisphere. Genetic markers were used to test the hypothesis that the vector and pathogen entered North America as a single introduction. With a portion of the cytochrome oxidase I gene, a single X. glabratus haplotype was detected in the USA. Similarly, Amplified Fragment Length Polymorphisms indicated that 95% (54 of 57) of the isolates of R. lauricola that were examined were of a single clonal genotype; only minor variation was detected in three polymorphic isolates. Similar levels of disease developed after swamp bay (P. palustris) was inoculated with each of the four genotypes of R. lauricola. It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States.  相似文献   

16.
Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year?1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between ?18 and 33.8 °C, with a crystallization temperature of ?22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.  相似文献   

17.
Over the last decades human have introduced non-native organisms to Antarctica, including the grass species Poa annua. This non-native grass under constant growth temperatures has been shown negatively affect the growth of the only two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis, under constant growth temperatures. However, whether there are changes in the interaction between these species under warmer conditions is an important question. In cold ecosystems, soil nutrient status directly affects plant responses to increases in temperature and Antarctic soils are highly variable in nutrient supply. Thus, in this study we experimentally assessed the interaction between the non-native Poa with the two native Antarctic vascular plant species at two different temperatures and levels of nutrient availability. Individual mats of the study species were collected in King George Island, and then transported to Concepcion where we conducted competition experiments. In the first experiment we used soil similar to that of Antarctica and plants in competition were grown at two temperatures: 5°/2° and 11°/5 °C (day/night temperature). In a second experiment plants were grown in these two temperature regimes, but we varied nitrogen (N) availability by irrigating plants with Hoagland solutions that contained 8000 or 300 µM of N. Overall, Poa exerted a competitive effect on Deschampsia but only at the higher temperature and higher N availability. At 5°/11 °C the competitive response of Deschampsia to Poa was of similar magnitude to the competitive effect of P. Deschampsia, and the competitive effect was greater with at low N. The competitive effect of Poa was similar to the competitive response of Colobanthus to Poa at both temperatures and N levels. Thus, at low temperatures and N soil content the native Antarctic species might withstand Poa invasion, but this might change with climate warming.  相似文献   

18.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

19.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

20.
Previous laboratory studies have demonstrated that insects can tolerate high temperatures by expressing inducible heat shock proteins (HSPs). This HSP-based tolerance, however, has seldom been studied under field conditions. Here, we cloned the HSP70 gene of Corythucha ciliata (Cchsp70), an invasive insect species with substantial thermal tolerance in subtropical China. We also compared the relative mRNA expression levels of Cchsp70 in response to controlled temperature treatments (2 h at 33–43 °C at 2 °C intervals in the laboratory) and to natural increases in temperature (08:00–14:00 at 2-h intervals, 29.7–37.2 °C) on a hot summer day in the field. The complete cDNA of Cchsp70 is 2256 bp long and has a 1917 bp open reading frame that encodes a protein (CcHSP70) with 639 amino acids. The expression levels of Cchsp70 significantly increased in response to high temperatures in both laboratory and field. At similar temperatures, however, the expression levels were much higher in the field than in the laboratory. These results suggest that CcHSP70 contributes to the thermal tolerance of C. ciliata and that factors in addition to thermal stress may induce Cchsp70 expression in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号