首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

2.
The Brazilian Atlantic Forest suffered a severe geographic contraction along the last five centuries that reduced drastically most vascular epiphyte populations. Among the range of man-made matrixes, tree monocultures have the potential to contribute positively to the maintenance of the regional epiphyte diversity. Here, we test the similarity in abundance, richness, and species composition between vascular epiphytic communities established in managed monocultures of exotic and native species with natural communities occurring in neighboring native Araucaria Forest patches. In the São Francisco de Paula National Forest (Rio Grande do Sul state, Brazil), we recorded 62 epiphyte species from 300 phorophytes occurring in 12, one-hectare plots of Araucaria Forest and managed plantations of Pinus, Eucalyptus and Araucaria. Species richness, rarefied richness and abundance were significantly higher in Araucaria Forest in comparison to the exotic stands. Species composition was also substantially differentiated as Araucaria Forest patches harbored a greater number of zoochorous species than those of the exotic stands. Additionally, plantations of Araucaria angustifolia, a native species, sustained more individuals and more species than the exotic plantations. Neither tree height nor DBH explained epiphyte richness; however, both phorophyte diversity and stand age together accounted for 92% of the among-site variation in epiphytic species richness. We conclude that substrate heterogeneity in combination with time available for colonization contribute significantly to beta-diversity of epiphytes in Araucaria forests. However, demographic experimental studies are necessary in order to disentangle the role of substrate quality from metapopulation processes, such as dispersal limitation, at both temporal and spatial scales.  相似文献   

3.
In rocky littoral communities, intense herbivory allows for the occurrence of trophic cascades where higher trophic levels influence producer communities. Invasive predators can be especially effective in imposing trophic cascades. The North American mud crab Rhithropanopeus harrisii is a recent invader in the Baltic Sea, with an expanding distribution range. Here, we document the effects of mud crab on the native invertebrate community associated with the key foundation species Fucus vesiculosus. During the initial 3 years of invasion, mud crab abundance in F. vesiculosus increased from 2 % to about 25 % of the algae being inhabited by crabs. Simultaneously, the invertebrate community underwent a major transition: Species richness and diversity dropped as a consequence of decreasing abundance and the loss of certain taxa. The abundance of gastropods decreased by 99 % and that of crustaceans by 75 %, while chironomids completely disappeared. Consequently, the community dominated earlier by herbivorous and periphyton-grazing gastropods and crustaceans shifted to a mussel dominated community with overall low abundances of herbivores. At the same time filamentous epiphytic algae prospered and the growth rate of F. vesiculosus decreased. We suggest that this shift in the invertebrate community may have far reaching consequences on ecosystem functioning. These arise through changes in the strength of producer–herbivore interaction, caused by mud crab predation on the dominating grazer taxa. This interaction is a major determinant of ecological function of ecosystems, i.e. productivity and energy flow to higher trophic levels. Therefore, the decrease in herbivory can be expected to have a major structuring role in producer communities of the rocky littoral macroalgal assemblages.  相似文献   

4.
There is increasing evidence that the severity of the ecological impact of non-native species does not necessarily scale linearly with their abundance in the introduced range. Nonetheless, the potential of low abundance invaders to alter the resilience of native communities to disturbance has been poorly explored. On Mediterranean rocky reefs, we tested the hypothesis that (1) a pulse disturbance opening gaps within canopy stands formed by the fucoid seaweed Cystoseira brachycarpa facilitates the establishment of the non-native seaweed Caulerpa cylindracea and that (2), once established, the seaweed can reduce the recovery of macroalgal canopies. In July 2011, C. cylindracea was experimentally transplanted in small and large plots that were either cleared of the canopy or left untouched. After 45 months, the cover of C. cylindracea was greatest in small canopy-removal plots, without, however, achieving values exceeding ~10%. Nonetheless, such a low abundance of C. cylindracea caused a threefold reduction in canopy recovery. The establishment of C. cylindracea in canopy-removal plots did not alter the structure of the understory assemblages or the cover of turf-forming, erect and encrusting algae and sessile invertebrates. Our results suggest that some non-native species may be stronger competitors than natives, despite their low abundance. This property has important implications for control programs since not achieving the total eradication of the targeted invader would make little progress towards the mitigation of its impacts. Finally, our results show that non-native species acting as passengers of change can ultimately promote the persistence of alternative degraded states.  相似文献   

5.
Tree hollows often harbor animals and microorganisms, thereby storing nutritive resources derived from their biological activities. The outflows from tree hollows can create unique microenvironments, which may affect communities of epiphytic organisms on trunk surfaces below the hollows. In this study, we tested whether the species richness and composition of epiphytic bryophytes (liverworts and mosses) and lichens differ above and below tree hollows of Aria japonica and Cercidiphyllum japonicum in a Japanese temperate forest. The species richness of epiphytic bryophytes and lichens did not differ above and below hollows; however, the species composition of bryophytes differed significantly above and below hollows. Indicator species analyses showed that the moss species Anomodon tristis and the liverwort species Porella vernicosa were significantly more common below than above hollows, while the liverwort species Radula japonica and four lichen species, including Leptogium cyanescens, occurred more frequently above than below hollows. Our results highlight that tree hollows can produce unique microenvironments on trunk surfaces that potentially contribute to the maintenance of epiphytic diversity on a local scale.  相似文献   

6.
The establishment of non-native habitat-forming seaweeds into new areas may trigger important changes in ecosystem functioning, yet their community and ecosystem-level effects remain largely understudied. Here we studied the spatial distribution of two common fish species (Xyrichtys novacula and Bothus podas) which are key components of communities in unconsolidated bottoms of temperate areas regarding the colonization of the newly-introduced tropical seaweed Halimeda incrassata in the Mediterranean Sea. We used a spatially-explicit before-after-control-impact model and a unique data-set formed by 6 years of fine-scale spatial information of fish and seaweed distribution and abundance. We demonstrate a long-term alteration on the spatial distribution of X. novacula characterized by a shift towards non-native H. incrassata beds, while no effect on B. podas. The introduction of the tropical seaweed H. incrassata has led to the re-distribution of X. novacula, potentially by harbouring a greater biodiversity of species at the base of the food-web through adding biogenic structure to an otherwise bare sediment. Our work demonstrates that non-native tropical habitat-forming species have the potential to maintain or even enhance fish abundance in unconsolidated bottoms in temperate areas potentially altering the functioning of native habitats.  相似文献   

7.
Positive plant–soil feedback (PSF) may be a mechanism of invader dominance, whereas PSF is often negative for native species. Previous work in Eastern deciduous forests of North America has shown that the invasive liana Euonymus fortunei participates in a net positive PSF with native groundcover Asarum canadense, indicating that PSF may contribute to invader dominance. However, to identify PSF as a general invasion driver for Euonymus, we must consider the average net pairwise feedback for multiple native–invasive species pairs, and compare this to the average net pairwise feedback amongst native–native pairs. Here, we test E. fortunei in net pairwise feedback against five native species, comparing native–invader feedback to feedback amongst natives over a gradient of light availability. PSF was on average neutral for invader–native pairs and on average negative for native–native pairs, indicating that Euonymus does not face the same constraints that limit the growth of native species. Because even neutral feedback can facilitate invasion, results indicate that PSF may facilitate invader dominance over a broad range of native functional groups and light conditions in Eastern deciduous forest.  相似文献   

8.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

9.
The intentionally introduced Pontogammarus robustoides is the most successful amphipod invader of Lithuanian inland waters and has become established in large lakes. Its impact on littoral invertebrate communities was studied by comparing similar habitats across lakes that harbour or are devoid of the invader. In habitats where P. robustoides is well established and numerous, it significantly reduces species richness and community diversity. Moderate pontogammarid density in habitats that can sustain the native gammarid Gammarus lacustris, however, revealed no negative impact on diversity metrics. Among the lakes studied, the benthic biomass did not differ in invaded and uninvaded habitats. The biomass of indigenous invertebrates (excluding chironomids, which exhibited high lake-specific biomass variation) was lower in the places with well-established P. robustoides. A detrimental impact was observed upon the native isopod Asellus aquaticus and a negative correlation with most of the higher taxa of native invertebrates. In the invaded lake habitats that favour P. robustoides, a change in community structure and a decrease in diversity up to twofold or more are to be expected.  相似文献   

10.
Richness and abundance of facultative symbionts vary strongly with aphid species and genotype, symbiont strain, host plant, biogeography, and a number of abiotic factors. Despite indications that aphids in the same ecological niche show similar levels of facultative symbiont richness, existing reports do not consider the potential role of host plants on aphid microbial community. Little is known about how oligophagy and polyphagy may be influenced by secondary symbiont distribution, mainly because studies on secondary symbiont diversity are biased towards polyphagous aphids from the Northern Hemisphere. Here, we demonstrate the richness and abundance of the most common aphid-associated facultative symbionts in two tropical aphid species, the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) (Hemiptera: Aphididae) and the polyphagous Aphis aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). Aphis citricidus is restricted to Citrus sp. host plants and closely related genera, whereas A. aurantii successfully exploits a wide variety of host plants from different families. Both were collected in the same ecological niche and our data basically indicated the same richness of secondary symbionts, but the abundance at which secondary symbionts occurred was very distinct between the two species. Spiroplasma was the most abundant facultative symbiont associated with A. citricidus and A. aurantii in the ecological niche studied. Single and multiple secondary symbiont infections were observed, but diversity of multiple infections was particularly high in A. citricidus. We discuss our findings and suggest hypotheses to explain causes and consequences of the differences in secondary symbiont diversity observed between these two aphid species.  相似文献   

11.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

12.
Species invasions have been increasing in frequency worldwide, yet critical gaps remain in our understanding of how invaders affect community structure and ecosystem functioning, particularly during the initial stages of invasion. Even less is known about changes in the invader that may take place immediately following an invasion. This study examined the recent invasion of the red macroalga Dasysiphonia (formerly, Heterosiphonia) japonica to the western North Atlantic Ocean with the aim of filling in gaps in our understanding of the impacts that invasive seaweeds have at the species, community and ecosystem levels immediately following their establishment. Within 5 years of invasion, community composition had changed and biodiversity had decreased to nearly half of pre-invasion levels. In addition, the relative proportion of Dasysiphonia decreased by 35% over our four-year study from initially high levels shortly after establishment. We found evidence that functional traits of this initially aggressive invader changed over time, as it ultimately became a less aggressive, co-inhabiting member of the local algal community, particularly with respect to nutrient uptake and relative abundances, although native diversity remained low relative to pre-invasion levels. Using these realistic changes in community structure, including decreases in biodiversity, we also showed that nutrient uptake of algal assemblages changed over time, suggesting changes in the functional characteristics of invaded communities, with implications for ecosystem-level processes such as nutrient fluxes. This study provides rare empirical evidence about the successional stages occurring at the individual, community, and ecosystem levels during the first 5 years of an invasion.  相似文献   

13.
Eichhornia crassipes, commonly known as water hyacinth, is a free-floating perennial aquatic plant native to South America, which has been widely introduced on different continents, including Africa. E. crassipes is abundant in both the Congo (Africa) and Amazon (South America) River catchments. We performed a comparative analysis of the ostracod communities (Crustacea, Ostracoda) in the E. crassipes pleuston in the Amazon (South America) and Congo (Africa) River catchments. We also compared the ostracod communities from the invasive E. crassipes with those associated with stands of the native African macrophyte Vossia cuspidata. We recorded 25 species of ostracods associated with E. crassipes in the Amazon and 40 in the Congo River catchments, distributed over 31 ostracod species in E. crassipes and 27 in V. cuspidata. No South American invasive ostracod species were found in the Congolese pleuston. Diversity and richness of Congolese ostracod communities was higher in the invasive (Eichhornia) than in a native plant (Vossia). The highest diversity and abundance of ostracod communities were recorded in the Congo River. The result of principal coordinates analysis, used to evaluate the (dis)similarity between different catchments, showed significant differences in species composition of the communities. However, a dispersion homogeneity test (PERMDISP) showed no significant differences in the variability of the composition of species of ostracods (beta diversity) within Congo and Amazon River catchments. It appears that local ostracod faunas have adapted to exploit the opportunities presented by the floating invasive Eichhornia, which did not act as “Noah’s Ark” by introducing South American ostracods in the Congo River.  相似文献   

14.
A pervasive problem in invasion ecology is the limited recovery of native communities following removal of invaders. Little evidence exists on the causes of variation in post-invasion recovery. In a 4-year experiment using 65 sets of matched plots, we imposed an invader removal treatment (with control) on heterogeneous grassland plots invaded or uninvaded by an aggressive recent arrival, Aegilops triuncialis (barb goatgrass). We tested the validity of plot matching using transplants and soil analyses. We analyzed the community-level correlates of invader impacts, removal treatment side effects, and community recovery, each defined in two ways: by compositional similarity to uninvaded plots, and by relative native species richness. Recovery of native species richness in invaded and treated plots was high (approaching 100 %) although recovery of composition was not high (median 71 % Bray–Curtis dissimilarity to uninvaded untreated plots). We measured resilience as the residuals of community recovery in models that controlled for invader impacts and removal treatment side effects. Compositional resilience was highest where the uninvaded communities had the least cover by other invaders in the same functional group as the focal invader. Richness resilience was highest where the uninvaded communities had the lowest native species richness. Our study suggests that the recovery of native species per se may be a more relevant goal than the recovery of the exact pre-invasion species composition of particular sites, particularly in cases where pre-invasion species composition included exotic species other than the focal invader.  相似文献   

15.
Nonnative plants alter the composition of native plant communities, with concomitant effects on arthropods. However, plant invasions may not be the only disturbance affecting native communities, and multiple disturbances can have compounding effects. We assessed the effects of invasion and drought on plant and arthropod communities by comparing grasslands dominated by nonnative Old World bluestem grasses (OWBs, Dichanthium annulatum) to grasslands dominated by native plants during a period of decreasing drought severity (2011–2013). Native plant communities had more species of plants and arthropods (/m2) than areas dominated by OWBs during extreme drought, but richness was comparable as drought severity decreased. Abundance of arthropods was greater in native plant communities than in OWB communities during extreme drought, but OWB communities had more arthropods during moderate and non-drought conditions. We observed a shift in the arthropod community from one dominated by detritivores to one dominated by herbivores following plant invasion; the magnitude of this shift increased as drought severity decreased. Both plant communities were dominated by nonnative arthropods. A nonnative leafhopper (Balclutha rubrostriata) and native mites (Mochlozetidae) dominated OWB communities as drought severity decreased, and OWBs may serve as refugia for both taxa. Nonnative woodlice (Armadillidium vulgare) dominated native plant communities during extreme and non-drought conditions and abundance of this species may be associated with an increase in plant litter and available nutrients. Given the importance of arthropods for ecosystem services, incorporating arthropod data into conservation studies may demonstrate how changes in arthropod diversity alter ecosystem function where nonnative plants are dominant.  相似文献   

16.
An increasing number of studies report impacts from invasive species on community metrics or ecosystem functions. We draw attention to an issue arising whenever impact is measured on a community where the invader is an integrated part: should or shouldn’t the attributes of the invader itself be included in the data-analysis? We identify many examples from the published literature showing inconsistency in whether or not data for the invader is included or excluded, and discuss potential implications for ecological interpretations. We also provide a case study to show that the invasive seaweed Undaria pinnatifida can be interpreted to have strong or no impact on seaweed communities, depending on its inclusion or exclusion in the data analysis. We conclude that it is critical for studies to (1) clearly state in the methods section, if the invaders are included or excluded from the data-analysis, (2) acknowledge potential differences in outcomes when comparing results based on different methods, and (3) analyze, if possible, impacts both with and without the invader. Finally, we note that this ‘inclusion versus exclusion’ conundrum is not only relevant to invasion biology, but to any field where the test-object of interest can be an integrated part of the response, such as when impact of seaweed blooms are analysed on community productivity or community effects are quantified over time from ecological pulse-perturbation experiments.  相似文献   

17.
Crustose coralline algae (CCA), a group of calcifying red algae found commonly in benthic marine ecosystems worldwide, perform essential ecological functions on coral reefs, including creating benthic substrate, stabilizing the reef structure and inducing coral settlement. An important feature of CCA is the ability to keep their surfaces free of epiphytic algae, thereby reducing algal overgrowth and allowing them access to light. However, the mechanisms by which CCA prevent settlement of opportunistic seaweeds (fleshy macroalgae) are not fully understood, nor is whether these mechanisms vary among CCA species. In our study based on the Great Barrier Reef, we demonstrate that three common CCA species (Titanoderma pustulatum, Porolithon onkodes and Neogoniolithon sp.) have a remarkable ability to deter settlement of seaweed spores. We provide experimental evidence that the CCA use allelopathy and microbial inhibition against the settlement of spores of the brown seaweed Padina boergesenii. Methanol extracts of allelopathic compounds from T. pustulatum, Po. onkodes and Neogoniolithon sp. significantly reduced the settlement of Pa. boergesenii spores by 4.3 times, 3.0 and 3.8 times, respectively. Further, we found that microbial biofilms, while having a lower inhibitory effect than allelopathic compounds, also reduced seaweed settlement of Pa. boergesenii. Our study demonstrates that allelopathy and microbial inhibition, in addition to epithallial tissue sloughing, are mechanisms employed by CCA to prevent the settlement of epiphytic algae. Understanding the mechanisms by which CCA avoid seaweed overgrowth contributes to our understanding of the dynamics of seaweed proliferations on reefs and to the ecological knowledge of this important group of reef-building organisms.  相似文献   

18.
Invasive plants may establish strong interactions with species in their new range which could limit or enhance their establishment and spread. These interactions depend upon traits of the invader and the recipient community, and may alter interactions among native species. In the Patagonian steppe we studied interactions of native ant assemblages with seeds of native and exotic plants, and asked whether ant–seed interactions differ with seed types and disturbance levels and whether the amount and type of ant–seed interactions can be predicted if both ant and seed traits are known. To characterize and quantify ant–seed interactions, we offered baits with large seeds of Pappostipa speciosa (native) and medium-sized elaiosome-bearing seeds of Carduus thoermeri (exotic), near and far from a road (high vs. low disturbed areas), and compared ant abundance and composition between areas. Interaction frequency was the highest for C. thoermeri seeds far from the road. Composition of ants interacting with C. thoermeri in these areas differed from that near the road and from that interacting with native seeds. Ant composition and abundance were similar between areas, but some species interacted more with exotic seeds in low disturbed areas. Ant foraging type predicted ant–seed interactions since the abundance of seed harvesters was positively correlated to interactions with P. speciosa, and that of generalists and predators, with interactions with C. thoermeri. The high interaction of ants with exotic seeds in low invaded areas suggests that ant activity could influence plant invasion, either by predating or dispersing seeds of invasive plants.  相似文献   

19.
Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation.  相似文献   

20.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号