首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenyl nucleotide levels and activity of AMP catabolism enzymes in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis have been studied under different dietary protein regimens. It was found that in animals with toxic hepatitis maintained on a diet rich in protein the ATP and ADP levels decreased, while AMP levels were similar to those in control animals. At the same time, in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis kept under conditions of protein deficiency, ATP and AMP pools were depleted. Changes in the adenyl nucleotides content were accompanied by altered activity of AMP catabolism enzymes, such as 5′-nucleotidase and AMP deaminase. It was found that in rats with toxic hepatitis that were fed a complete diet, AMP deaminase activity increased in comparison to the control level along with 5′-nucleotidase stimulation. At the same time, in protein-restricted rats with toxic liver damage, AMP deaminase activity decreased, while 5′-nucleotidase activity was elevated in comparison to control values. These results indicate depletion of energy sources in the liver cells of rats with acetaminophen-induced hepatitis that were fed a low-protein diet. The observed changes in the activity of AMP catabolism enzymes may be considered as one of the mechanisms that regulate the cellular energy function.  相似文献   

2.
Two- to three-kilogram albino rabbits were subtotally nephrectomized and compared with sham-operated normal rabbits for the muscle content of adenosine mono (AMP)-, di (ADP)- and triphosphate (ATP) and inosine monophosphate (IMP) before and after exercise. Analysis of snap-frozen, lyophilized soleus muscle showed lower levels of AMP, ATP and total adenosine nucleotide (TAN) (p less than 0.01) and ATP/ADP (p less than 0.02) in the subtotally nephrectomized animals. IMP levels following exercise were higher in the experimental animals. Muscle adenosine nucleotide concentrations in the experimental animals were significantly different for normals, thus suggesting that minimal azotemia could adversely affect muscle function in these animals.  相似文献   

3.
The purpose of the present study was to investigate the effects of exercise (30 min, 23 m/min, 0% grade) on the hepatic levels of ATP in fasted adrenodemedullated rats, with an intraperitoneal injection of sodium phosphate (Na (2) PO (4 ), 0.91 mM) or saline (NaCl). Sodium phosphate was injected to determine if the postulated decrease in liver ATP during exercise may be changed by providing an excess of phosphate. At the end of exercise, a piece of liver was rapidly freeze clamped and used for the enzymatic determination of ATP levels. Liver ATP, in saline-injected rats, was significantly (P < 0.05) decreased by fasting, compared to fed rats (𝒳 +/- SE: 3. 21 +/- 0.2 vs 2.86+/- 0.2 micromol/g). Exercise in fasted rats decreased even more the ATP response in liver (2.58 +/- 0.14 micromol/g). Injection of Na (2) PO (4) did not significantly (P > 0. 05) alter the pattern of ATP response following these 3 conditions (3.35 +/- 0.14 vs 3.0 +/-0.12 vs 2.57 +/- 0.1 micromol/g), ATP levels being significantly (P <0.05) decreased by the fast and the exercise in the fasted state. Fasting and exercise resulted in a significant (P < 0.05) decrease in liver glycogen and plasma glucose concentrations and an increase in free fatty acid levels in both NaCl- and Na (2 )PO (4) -injected groups. In both injection conditions, beta-hydroxybutyrate and peripheral insulin concentrations were respectively, increased and decreased (P < 0.05) by fasting, while norepinephrine and portal glucagon were decreased (P > 0.05) following exercise. The main effect of the injection of Na ( 2) PO (4) was a stimulation (P < 0.05) of peripheral glucagon response following exercise. It is concluded that exercise results in a decrease in liver ATP levels even in fasted rats and that this decrease is not corrected by Na (2 )PO( 4) administration. The decreased liver ATP levels might be involved in the metabolic adaptations to exercise.  相似文献   

4.
Liver mitochondria from octanoate-treated rabbits showed an impaired ability to synthesize citrulline. Two methods were used to evaluate citrulline synthesis in rat liver mitochondria. Under these conditions octanoate inhibited citrulline synthesis by over 50%. When ATP was included in the assay medium the inhibitory effect of octanoate was prevented. In the absence of ATP in the suspending medium, octanoate did not significantly lower total adenine nucleotides in rat liver mitochondria. However, under these conditions octanoate caused a change in the adenine nucleotide profile such that ATP content was decreased and AMP content was increased. When ATP was present in the assay medium, octanoate caused a similar increase in AMP content. However, ATP decreased only slightly. The alterations in mitochondrial adenine nucleotide profile by octanoate and the reversal of the effect by exogenous ATP suggests that octanoate inhibits citrulline synthesis via reduced intramitochondrial ATP levels. The ability of octanoate to lower mitochondrial ATP and elevate mitochondrial AMP may be related to its intramitochondrial activation by the medium chain fatty acid activating enzyme.  相似文献   

5.
Initial velocity kinetic data indicate that ADP and AMP are inhibitors of mammalian liver asparagine synthetase. The non-product nucleotide ADP is a much more potent inhibitor than AMP, although both apparently compete for the same site. This modifier site, however, does not overlap spatially with the substrate site for ATP. Both ADP and AMP are Vmax inhibitors, but ADP also raises the Km for ATP. Adenylate energy charge, calculated at various levels of ATP and ADP show typical correlations with activity, but with AMP these correlations are weak and atypical.  相似文献   

6.
In silico studies carried out by using a computer model of oxidative phosphorylation and anaerobic glycolysis in skeletal muscle demonstrated that deamination of AMP to IMP during heavy short term exercise and/or hypoxia lessens the acidification of myocytes. The concerted action of adenylate kinase and AMP deaminase, leading to a decrease in the total adenine nucleotide pool, constitutes an additional process consuming ADP and producing ATP. It diminishes the amount of ADP that must be converted to ATP by other processes in order to meet the rate of ADP production by ATPases (because the adenylate kinase + AMP deaminase system produces only 1 ATP per 2 ADPs used, ATP consumption is not matched by ATP production, and the reduction of the total adenine nucleotide pool occurs mostly at the cost of [ATP]). As a result, the rate of ADP consumption by other processes may be lowered. This effect concerns mostly ADP consumption by anaerobic glycolysis that is inhibited by AMP deamination-induced decrease in [ADP] and [AMP], and not oxidative phosphorylation, because during heavy exercise and/or hypoxia [ADP] is significantly greater than the Km value of this process for ADP. The resultant reduction of proton production by anaerobic glycolysis enables us to delay the termination of exercise because of fatigue and/or to diminish cell damage.  相似文献   

7.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

8.
Adenosine kinase is a well-known enzyme which catalyzes the phosphorylation of adenosine to AMP: Its metabolic and kinetic properties are well studied. Here, we report new properties of rat liver enzyme, demonstrating a new reaction: ADP can be a phosphate donor instead ATP, according to the reaction: adenosine + ADP --> 2AMP) demonstrating the efficiency of AdK to phosphorylate adenosine, also starting from ADP. Cells could exploited this property in situations in which ATP levels are strongly decreased and ADP decreases slowly.  相似文献   

9.
Adenosine kinase is a well-known enzyme which catalyzes the phosphorylation of adenosine to AMP: Its metabolic and kinetic properties are well studied. Here, we report new properties of rat liver enzyme, demonstrating a new reaction: ADP can be a phosphate donor instead ATP, according to the reaction: adenosine + ADP → 2AMP) demonstrating the efficiency of AdK to phosphorylate adenosine, also starting from ADP. Cells could exploited this property in situations in which ATP levels are strongly decreased and ADP decreases slowly.  相似文献   

10.
Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.  相似文献   

11.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

12.
NADH oxidase activity of rat liver plasma membranes was inhibited by lowconcentrations (1-100 nM) of ATP. The inhibition was amplified by additionof nanomolar concentrations (0.1-10) of cyclic AMP. The inhibition wascomplex and related to a marked increase in the Km for NADH at high NADHconcentrations together with a concomitant decrease in the Vmax. In theabsence of added or residual ATP, cyclic AMP was without effect. Theresponse of cyclic AMP + ATP was inhibited by low concentrations of theselective inhibitor of cyclic AMP-dependent protein kinase, H-89 but not bystaurosporin. The Vmax but not the Km was modified by treating the plasmamembranes with a mild oxidizing agent, N-chlorosuccinamide, or with thereducing agent, dithiothreitol. In the presence of dithiothreitol, the Vmaxwas reduced by cyclic AMP + ATP. In contrast, in the presence ofN-chlorosuccinamide, the Vmax was increased by cyclic AMP + ATP relative tocyclic AMP + ATP alone. Thus, the effect of cyclic AMP + ATP on the Vmaxcould be either an increase or a decrease depending on whether the membraneswere oxidized or reduced. The results demonstrate regulation of NADH oxidaseactivity of rat liver plasma membranes through cyclic AMP-mediatedphosphorylation by membrane-located protein kinase activities where thefinal response is dependent on the oxidation-reduction status of the plasmamembranes.  相似文献   

13.
The effects of glucose and of various inhibitors of glycolysis or of oxidative phosphorylation on stimulated lipolysis and on intracellular cyclic AMP and ATP levels were investigated in isolated human fat cells. The glycolysis inhibitors, NaF and monoiodoacetate, inhibited epinephrine or theophylline-stimulated lipolysis and parallely reduced the intracellular cyclic AMP and ATP levels; however, neither NaF nor monoidoacetate significantly affected dibutyryl cyclic AMP-induced lipolysis. Removal of glucose from the medium also reduced the rate of epinephrine-stimulated lipolysis and the intracellular cyclic AMP and ATP levels but failed to modify the lipolytic activity of dibutyryl cyclic AMP. The oxidative phosphorylation inhibitors, antimycin A and, under fixed conditions, 2,4-dinitrophenol also strongly decreased the adipocyte cyclic AMP and ATP levels but inhibited as well the rate of epinephrine- and of dibutyryl cyclic AMP-induced lipolysis. N-Ethylmaleimide, a mixed glycolysis and oxidative phosphorylation inhibitor, not only reduced the intracellular cyclic AMP and ATP levels and epinephrine- or theophylline-induced lipolysis, but also that stimulated by dibutyryl cyclic AMP. When glycolysis was almost fully inhibited, human fat cells were insensitive to epinephrine but remained fully responsive to dibutyryl cyclic AMP. These results, showing a relationship between ATP availability, cyclic AMP synthesis and lipolysis, suggest a different ATP requirement for cyclic AMP synthesis and triacylglycerol lipase activation, a difference which could explain why ATP issued from glucose breakdown appears to be a determinant factor for cyclic AMP synthesis, but not for triacylglycerol lipase activation in human fat cells.  相似文献   

14.
Feeding rats in diet high in glucose has been demonstrated to inhibit the induction of many enzymes, block the action of glucocorticoids, and, in general, appears to result in decreased cyclic AMP activity. We found that glucose feeding depresses both messenger RNA (mRNA) and non-mRNA synthesis. Electron microscopic examination of the nucleus revealed that glucose feeding decreases the granular component of liver cell nucleoli. It only slightly decreases liver cyclic AMP levels, but produces a sixfold elevation in levels of the cyclic AMP antagonist, cyclic GMP. Administration of bromocyclic GMP, like glucose feeding, depresses mRNA synthesis, but does not simulate the effect of the carbohydrate on nuclear morphology. In addition, glucose feeding halves liver inorganic phosphate and triples ATP levels. Phosphorylation of nuclear proteins, however, remains unaltered. Despite the antagonism between glucose feeding and glucocorticoid activity, the former compound did not change the binding of dexamethasone to liver nuclei.  相似文献   

15.
IMP production in and force exerted by rat quadriceps muscle in situ during various types of exercise were examined in relation to age. During continuous isometric exercise with constant stimulation time, the amount of IMP was linearly and inversely related to the age of the animals; a higher IMP concentration was found in intermittent isometric and dynamic exercise. No relationship was found between the total AMP deaminase activity and age. Exercise influenced neither the total activity nor the activity in the soluble fraction. From the results it is concluded that: the IMP concentration is linearly related to the free intracellular ATP4-/ADP3- ratio and the free AMP2- concentration; older animals are better able to maintain a high intramuscular ATP4-/ADP3- ratio and a low AMP2- concentration; IMP is produced in particular under conditions when the muscle has to work under extreme stress. IMP possibly exerts a feed-back control on the contraction system.  相似文献   

16.
The atractyloside-insensitive accumulation of adenine nucleotides by rat liver mitochondria (as opposed to the exchange-diffusion catalysed by the adenine nucleotide translocase) has been measured by using the luciferin/luciferase assay as well as by measuring [14C]ATP uptake. In foetal rat liver mitochondria ATP is accumulated more rapidly than ADP, whereas AMP is not taken up. The uptake of ATP occurs against a concentration gradient, and the rate of ATP uptake is greater in foetal than in adult rat liver mitochondria. The accumulated [14C]ATP is shown to be present within the mitochondrial matrix space and is freely available to the adenine nucleotide translocase for exchange with ATP present in the external medium. The uptake is specific for ATP and ADP and is not inhibited by adenosine 5'-[beta gamma-imido] triphosphate, GTP, CTP, cyclic AMP or Pi, whereas dATP and AMP do inhibit ATP accumulation. The ATP accumulation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, KCN and mersalyl but is insensitive to atractyloside. The ATP uptake is concentration-dependent and exhibits Michaelis-Menten kinetics. The divalent cations Mg2+ and Ca2+ greatly enhance ATP accumulation, and the presence of hexokinase inhibits the uptake of ATP by foetal rat liver mitochondria. These latter effects provide an explanation for the low adenine nucleotide content of foetal rat liver mitochondria and the rapid increase that occurs in the mitochondrial adenine nucleotide concentration in vivo immediately after birth.  相似文献   

17.
Both levels of total adenine nucleotides, ATP, AMP, ATP/ADP ratio and phosphate potential of cell and cytosol and the intensity of mitochondrial oxidation (fatty acid beta-oxidation in particular) and phosphorylation are elevated in the liver of db/db mice as compared with control. Presumably these alterations corresponding to the total activation of metabolic processes in db/db mice are mediated by hyperinsulinemia. Nicotinamide treatment (2.5 mg/100 g body weight, 14 days, i.m.) elicits further increase of ATP and total adenine nucleotide levels, cytosolic phosphate potential and activation of mitochondrial oxidation and phosphorylation. The findings obtained can be used for explanation of nicotinamide inhibition of gluconeogenesis, diacylglycerol and phosphoacylglycerol biosynthesis in the liver of db/db mice.  相似文献   

18.
1. 5-HT (10(-4) M) had no effect on the activity of phosphofructokinase in Hymenolepis diminuta. Concentrations of ATP above 33 microM inhibited PFK activity; AMP and cyclic AMP relieved this inhibition. 2. Local levels of cyclic AMP may be indirectly modulated by NaF, guanylyl imidophosphate, or 5-HT in the presence of GTP, which stimulates adenylyl cyclase activity x2 in H. diminuta homogenates. 3. Fructose 2,6-bisphosphate (F2BP), a physiological regulator of PFK activity in rat liver, also relieved ATP-induced inhibition of PFK. F2BP was present in supernatants from the worms at about 20 mumol/g wet wt. 4. 5-HT may cause an increase in the rate of glycolysis in H. diminuta by elevating either cyclic AMP and/or AMP levels; these nucleotides can in turn increase PFK activity.  相似文献   

19.
1. Evidence is presented that cyclic AMP inhibits the incorporation of l-[4,5-(3)H]leucine into protein in a cell-free system from rat liver. This inhibition occurs after aminoacyl-tRNA formation. 2. Microsomal fractions, isolated after the incubation of postmitochondrial supernatant with cyclic AMP and ATP, show a diminished ability to synthesize protein. Both cyclic AMP and ATP are required for this effect. 3. A possible physiological role for the anti-anabolic action of cyclic AMP is discussed in terms of the control of gluconeogenesis.  相似文献   

20.
Abstract— A simple, sensitive and specific method for assaying cyclic AMP in various tissues is reported. Cyclic AMP was isolated from contaminating nucleotides and was converted to ATP with a phosphodiesterase-myokinase-pyruvate kinase system. The ATP was determined enzymically in a liquid scintillation counter by the firefly luciferin-luciferase technique. This procedure was capable of detecting as little as 5 × 10?14 mol of cyclic AMP and could therefore be used for analyses on less than 1 mg of brain. The assay was reproducible and linear over a wide range of tissue concentrations. In the rat, the highest levels of cyclic AMP (2.7–4.2 pmol/mg wet wt. of tissue) were present in the pineal, heart, pituitary, thyroid, cerebellar cortex, kidney, adrenal, liver and pyloric region of the stomach; intermediate levels (1.5–2.7 pmol/mg wet wt. of tissue) were found in testis, skin, aorta, intestine, submaxillary gland, spleen, muscle and cerebral cortex, moderately low levels (1.0–1.5 pmol/mg wet wt. of tissue) were found in lung, trachea and greater curvature of the stomach; whereas low levels (0.15–0.60 pmol/mg wet wt. of tissue) were found in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号