首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholecystokinin (CCK) is produced from pro CCK by a series of enzymatic cleavages. One of the enzymes thought to be important for pro CCK cleavage is prohormone convertase 5 (PC5). STC-1 cells, a mouse intestinal tumor cell line that expresses CCK, PC1, PC2, and PC5 were stably transfected with hairpin loop plasmids encoding siRNA targeting PC5 and clones were selected. CCK secretion was reduced significantly. PC5 mRNA and protein expression as measured by quantitative PCR and Western blot analysis was reduced about 50%. CCK and PC1 mRNA expression were not changed. These cells showed a three-fold increase in PC2 mRNA and protein expression. This increase may represent a compensatory mechanism triggered by the loss of PC5. The decrease in CCK in the media was due largely to loss of CCK 22. These results provide the first direct evidence that PC5 is involved in CCK processing.  相似文献   

2.
Two different RNAi methods were used to inhibit the expression of prohormone convertase 1 (PC1) in At-T20 cells. Transient transfection of double stranded RNA and stable expression of a vector expressing hairpin-loop RNA targeting PC1 reduced cholecystokinin (CCK) secretion from At-T20 cells. PC1 mRNA and protein were also decreased in the vector transfected cells. This treatment caused a shift in the forms of cholecystokinin (CCK) secreted, decreasing CCK 22 and increasing CCK 8. Stable expression of RNAi effectively decreased PC1 expression. The observed decrease in CCK seen with these RNAi treatments further supports a role for PC1 in CCK processing in these cells.  相似文献   

3.
Tagen MB  Beinfeld MC 《Peptides》2005,26(12):2530-2535
Purified recombinant prohormone convertase 1 and 2 (PC1 and PC2) cleave a peptide containing cholecystokinin (CCK) 8 Gly Arg Arg and the carboxyl-terminal peptide liberating CCK 8 Gly Arg Arg. PC1 and PC2 also cleave purified pro CCK, liberating the amino terminal pro-peptide while no carboxyl-terminal cleavage was detected. Under the conditions of the in vitro cleavage assay, it appears that the carboxyl-terminal cleavage site of pro CCK is not accessible to the enzymes while this site is readily cleaved in a synthetic peptide. Additional cellular proteins that unfold the prohormone may be required to expose the carboxyl-terminal site for cleavage.  相似文献   

4.
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.  相似文献   

5.
Beinfeld MC  Wang W 《Life sciences》2002,70(11):1251-1258
Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.  相似文献   

6.
Endocrine tumor cells in culture and in vitro cleavage assays have shown that PC1 and PC2 are capable of processing pro-CCK into smaller, intermediate and final, bioactive forms. Similar studies have shown that PC5 has the ability to process a number of propeptides. Here, we use GT1-7 (mouse hypothalamic) and SK-N-MC and SK-N-SH (human neuroblastoma) tumor cell lines to study the ability of PC5 to process pro-CCK. RT-PCR and Western blot analysis showed that the cells express PC5 mRNA and protein, but not PC1 or PC2. They were engineered to stably overexpress CCK and cell media was analyzed for pro-CCK expression and cleavage of the prohormone. Radioimmunoassays showed that pro-CCK was expressed, but no amidated CCK was detected. Lack of production of amidated CCK may be due to the lack of the appropriate carboxypeptidase and amidating enzymes. Production of glycine-extended CCK processing products was evaluated by treatment of media with carboxypeptidase B followed by analysis with a CCK Gly RIA. Glycine-extended forms of the peptide were found in the media. The predominant forms co-eluted with CCK 12 Gly and CCK 22 Gly on gel filtration chromatography. The results demonstrate that these cell lines which express PC5 and not PC1 or PC2 have the ability to process pro-CCK into intermediate, glycine-extended forms more closely resembling pro-CCK products in intestine than in brain.  相似文献   

7.
A population of neurons in the hippocampus and subiculum contains cholecystokinin (CCK). Following transection of the dorsal fornix, a major afferent pathway of the hippocampus and associated structures. CCK levels were reduced in the septum and hypothalamus. A microdissection analysis indicated that the loss of CCK occurred in nuclei receiving direct projections from the hippocampus and subiculum, suggesting that CCK-containing neurons in the hippocampus and subiculum project to extrahippocampal regions.  相似文献   

8.
Prohormone convertases PC1 and PC2 are endoproteases involved in prohormone cleavage at pairs of basic amino acids. There is a report that prohormone convertase exists in the rat anterior pituitary gonadotrophs, where it had previously been considered that proprotein processing does not take place. In addition to luteinizing hormone and follicle-stimulating hormone, rat pituitary gonadotrophs contain chromogranin A (CgA) and secretogranin II (SgII), two members of the family of granin proteins, which have proteolytic sites in their molecules. In the present study we examined whether there is a close correlation between subcellular localization of prohormone convertases and granin proteins. Ultrathin sections of rat anterior pituitary were immunolabeled with anti-PC1 or -PC2 antisera and then stained with immunogold. Immunogold particles for PC1 were exclusively found in large, lucent secretory granules, whereas those for PC2 were seen in both large, lucent and small, dense granules. The double-immunolabeling also demonstrated colocalization of PC2 and SgII in small, dense granules and of PC1, PC2, and CgA in large, lucent granules. These immunocytochemical results suggest that PC2 may be involved in the proteolytic processing of SgII and that both PC1 and PC2 may be necessary to process CgA.  相似文献   

9.
We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the ultimobranchial gland of the adult bullfrog using immunohistochemical (IHC) and in situ hybridization (ISH) techniques. In the ultimobranchial gland, PC1-immunoreactive cells were columnar, and were present in the follicular epithelium. When serial sections were immunostained with anti-calcitonin, anti-CGRP, anti-PC1, and anti-PC2 sera, PC1 was found only in the calcitonin/CGRP-producing cells. No PC2-immunopositive cells were detected. In the ISH, PC1 mRNA-positive cells were detected in the follicle cells in the ultimobranchial gland. No PC2 mRNA-positive cells were detected. RT-PCR revealed expression of the mRNAs of PC1 and the PC2 in the ultimobranchial gland. However, very little of the PC2 mRNA is probably translated because no PC2 protein was detected either by IHC staining or by Western blotting analysis. We conclude that the main prohormone convertase that is involved in the proteolytic cleavage of procalcitonin in the bullfrog is PC1.  相似文献   

10.
Objective: Gastric electrical stimulation (GES) has been introduced for treating obesity. The hippocampus is known to be involved in the regulation of gastrointestinal motility. Changes in hypathalumus cholecystokinin (CCK) have been observed in genetically obese rodents. This experiment was to study the effect of GES on the activities of neurons and the expression of CCK in the hippocampus. Methods and Procedures: We investigated the effect of GES (GES‐I: pulse train of standard parameters; GES‐2: reduced train‐on time; GES‐3: increased pulse width; GES‐4: reduced pulse frequency) on neurons responsive to gastric distention (GD) by recording extracellular potentials of single neurons and observing the expression of CCK in the rodent hippocampus by immunohistochemistry staining, radioimmunoassay, and real‐time PCR. Results: 92.1% of neurons in the CA2‐3 region responded to GD, 53.2% of which showed excitation (GD‐E), and 46.8% showed inhibition (GD‐I). 64.8% GD‐responsive neurons were excited by GES. The response was associated with stimulation strength, pulse width, and frequency; 70.6, 57.1, 94.4, and 66.7% of GD‐E and 72.7, 57.1, 86.4, and 50% of GD‐I neurons showed excitatory responses to GES‐I, ?2, ?3, and ?4, respectively. CCK immunoreactive positive neurons (P < 0.001), the content of CCK‐like materials (P < 0.05) and the amount of CCK mRNA were significantly increased after GES (P < 0.05). Discussion: These findings suggest the central, neuronal, and hormonal mechanisms of GES. GES may excite the activity of GD‐sensitive neurons and increase the expression of CCK in the hippocampus. These excitatory effects of GES seem to be related to the parameters of stimulation.  相似文献   

11.
Pan H  Nanno D  Che FY  Zhu X  Salton SR  Steiner DF  Fricker LD  Devi LA 《Biochemistry》2005,44(12):4939-4948
Prohormone convertase 1 (PC1; also known as PC3) is believed to be responsible for the processing of many neuropeptide precursors. To look at the role PC1 plays in neuropeptide processing in brain and pituitary, we used radioimmunoassays (RIA) as well as quantitative peptidomic methods and examined changes in the levels of multiple neuropeptide products in PC1 knockout (KO) mice. The processing of proenkephalin was impaired in PC1 KO mouse brains with a decrease in the level of Met-Enkephalin immunoreactivity (ir-Met-Enk) and an accumulation of higher molecular weight processing intermediates containing ir-Met-Enk. Processing of the neuropeptide precursor VGF was also affected in PC1 KO mouse brains with a decrease in the level of an endogenous 3 kDa C-terminal peptide. In contrast, the processing of proSAAS into PEN was not altered in PC1 KO mouse brains. Quantitative mass spectrometry was used to analyze a number of peptides derived from proopiomelanocortin (POMC), provasopressin, prooxytocin, chromogranin A, chromogranin B, and secretogranin II. Among them, the levels of oxytocin and peptides derived from chromogranin A and B dramatically decreased in the PC1 KO mouse pituitaries, while the levels of peptides derived from proopiomelanocortin and provasopressin did not show substantial changes. In conclusion, these results support the notion that PC1 plays a key role in the processing of multiple neuroendocrine peptide precursors and also reveal the presence of a redundant system in the processing of a number of physiologically important bioactive peptides.  相似文献   

12.
Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.  相似文献   

13.
Gastrin is initially synthesized as a large precursor that requires endoproteolytic cleavage by a prohormone convertase (PC) for bioactivation. Gastric antral G-cells process progastrin at Arg(94)Arg(95) and Lys(74)Lys(75) residues generating gastrin heptadecapeptide (G17-NH(2)). Conversely, duodenal G-cells process progastrin to gastrin tetratriacontapeptide (G34-NH(2)) with little processing at Lys(74)Lys(75). Both tissues express PC1/PC3 and PC2. Previously, we demonstrated that heterologous expression of progastrin in an endocrine cell line that expresses PC1/PC3 and little PC2 (AtT-20) resulted in the formation of G34-NH(2). To confirm that PC1/PC3 was responsible for progastrin processing in AtT-20 cells and capable of processing progastrin in vivo we coexpressed either human wild-type (Lys(74)Lys(75)) or mutant (Arg(74)Arg(75), Lys(74)Arg(75), and Arg(74)Lys(75)) progastrins in AtT-20 cells with two different antisense PC1/PC3 constructs. Coexpression of either antisense construct resulted in a consistent decrease in G34-NH(2) formation. Gastrin mRNA expression and progastrin synthesis were equivalent in each cell line. Although mutation of the Lys(74)Lys(75) site within G34-NH(2) to Lys(74)Arg(75) resulted in the production of primarily G17-NH(2) rather than G34-NH(2), inhibition of PC1/PC3 did not significantly inhibit processing at the Lys(74)Arg(75) site. We conclude that PC1/PC3 is a progastrin processing enzyme, suggesting a role for PC1/PC3 progastrin processing in G-cells.  相似文献   

14.
The transmembrane and multidomain neural adhesion molecule L1 plays important functional roles in the developing and adult nervous system. L1 is proteolytically processed at two distinct sites within the extracellular domain, leading to the generation of different fragments. In this report, we present evidence that the proprotein convertase PC5A is the protease that cleaves L1 in the third fibronectin type III domain, whereas the proprotein convertases furin, PC1, PC2, PACE4, and PC7 are not effective in cleaving L1. Analysis of mutations revealed Arg(845) to be the site of cleavage generating the N-terminal 140-kDa fragment. This fragment was present in the hippocampus, which expresses PC5A, but was not detectable in the cerebellum, which does not express PC5A. The 140-kDa L1 fragment was found to be tightly associated with the full-length 200-kDa L1 molecule. The complex dissociated from the membrane upon cleavage by a protease acting at a more membrane-proximal site of full-length L1. This proteolytic cleavage was inhibited by the metalloprotease inhibitor GM 6001 and enhanced by a calmodulin inhibitor. L1-dependent neurite outgrowth of cerebellar neurons was inhibited by GM 6001, suggesting that proteolytic processing of L1 by a metalloprotease is involved in neurite outgrowth.  相似文献   

15.
PC1 and PC2 are enzymes involved in the activation of prohormones via the cleavage of pairs of basic amino acids. The expression levels of each of these enzymes were evaluated in the rat anterior and neurointermediate pituitary lobes by in situ hybridization and Northern gel analysis and after various pharmacological manipulations. All intermediate lobe melanotrophs expressed high levels of PC2 mRNA and lower levels of PC1 mRNA. PC1 mRNA was highly expressed throughout the anterior lobe; however, appreciable PC2 mRNA levels were also found. Based on colocalization studies, anterior lobe corticotrophs were found to express PC1 mRNA, but very little PC2 mRNA. Neurointermediate lobe levels of PC1, PC2, and POMC mRNA increased 2- to 6-fold in rats treated with haloperidol, while they decreased to 10-25% of their control values after bromocriptine treatment. These results indicate that in the intermediate lobe, dopamine is involved in the regulation of PC1 and PC2. In the anterior lobe, haloperidol had a strong effect on PC2 mRNA, increasing its levels by 8- to 12-fold compared to the control value, while PC1 mRNA was unaffected. Both PC1 and PC2 mRNA levels were increased 5- to 9-fold in animals made hypothyroid by treatment with 6-n-propyl-2-thiouracil. Adrenalectomy had no significant effect on anterior lobe PC1 mRNA levels. However, both PC1 and PC2 mRNA levels were responsive to dexamethasone treatment in the AtT-20 cell lines. Our results indicate that dopamine, thyroid hormones, and corticosteroids are involved in PC1 and/or PC2 gene expression. These data are also consistent with the role of PC1 and PC2 as prohormone-processing enzymes.  相似文献   

16.
The discovery of the prohormone convertase (PC) family of enzymes has provided several good candidates (PC1, PC2, and PC5) for the enzymes responsible for the endoproteolytic cleavage of procholecystokinin (pro-CCK). Determination of the role of individual pro-hormone convertases in the processing of pro-CCK is complicated because several of these enzymes are found in endocrine tumor cells expressing CCK mRNA and in identified neurons in the brain. Production of active recombinant PC5 permits the determination of its ability to cleave substrates related to pro-CCK. Active PC5, secreted from baculovirus-infected Sf9 cells, was partially purified by ion-exchange chromatography. Western blot analysis confirmed the presence of the active form of the enzyme in infected cell media and its absence from uninfected cell media. The enzyme is most active at acidic pH 6.5 and is maximally activated by 5 mM calcium. PC5 was able to cleave both monobasic and dibasic substrates without a requirement for a basic residue at P-4 and it displayed a K(m) in the micromolar range. The enzyme was inhibited by EDTA, 1,10-phenanthroline, and p-CMS, as well as by two specific PC inhibitors. This is the first reported preparation of active recombinant PC5. Like the other members of its family, it has the correct catalytic characteristics in vitro to play a role in the processing of neuropeptide precursor proteins into their final bioactive forms.  相似文献   

17.
B Mentrup  W Weidemann 《Gene》1999,237(1):29-33
Prohormone or proprotein convertases are members of the subtilisin family of serine proteases. They are involved in the activation of precursor molecules by endoproteolytic cleavage at basic amino acid residues. Among the different members of this prohormone convertase family, the prohormone convertase 2 (PC2) is almost exclusively expressed in endocrine and neuroendocrine tissues and plays an important role in the endoproteolytic processing of prohormones. Here we describe the exon-intron organization of the PC2 gene from the insect Lucilia cuprina by characterization of PCR-amplified genomic DNA fragments. The insect PC2 gene contains 12 exons with an estimated size of over 14.5 kb. The exon sizes range from 38 bp to > 448 bp. All identified intron-exon boundaries are consistent with the GT-AG-rule. A comparison of the genomic structures of the thus far known prohormone convertase genes with that of the insect PC2 gene revealed a conservation of the positions of most introns interrupting the exons coding for the amino-terminal and catalytic domains. This conservation is consistent with the suggestion of a common evolutionary origin for the prohormone convertase gene family.  相似文献   

18.
19.
The cholecystokinin receptor type 1 (CCK1R) is a G protein-coupled receptor (GPCR) that is involved in several biological processes including the regulation of the secretion of digestive enzymes. The peptide hormone cholecystokinin (CCK) binds to CCK1R, which is an important pharmacological target for several diseases, including obesity. Interestingly, nutritional dietary peptides also appear to activate CCK1R, and may play a role in CCK1R signaling in the gut. In this study, a novel technique to screen for CCK1R ligands based on affinity-selection is described. Functional expressed CCK1R is reconstituted into membrane nanoparticles called NABBs (nanoscale apo-lipoprotein bound bilayers). NABBs are native-like bilayer membrane systems for incorporation of GPCRs. CCK1R-NABBs were characterized using a fluorescently labeled CCK analog and can be used as a cutting-edge technology to screen for CCK1R ligands using affinity-selection mass spectrometry.  相似文献   

20.
We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the anterior pituitary cells of developing rats by a double staining procedure using in situ RT-PCR and an immunofluorescence technique. In the adult, both PC1 mRNA and PC2 mRNA were expressed in corticotrophs, gonadotrophs, thyrotrophs, and mammotrophs. These cells, except for corticotrophs, had previously been considered to be ones in which proprotein processing does not take place, but both PC1 and PC2 may be necessary to process other proteins, such as granin family proteins, having proteolytic cleavage sites and located in secretory granules of the above trophs. In addition, no PC1 or PC2 mRNA was expressed in somatotrophs, which is consistent with the fact that somatotrophs do not contain these granins. In addition, 7B2 mRNA was expressed in these PC2-positive trophs, suggesting that there is a functional relationship between PC2 and 7B2 proteins. We found that alpha-MSH was expressed in the corticotrophs of the postnatal rat and that the number of alpha-MSH-immunopositive corticotrophs decreased as development proceeded. Because the changes in the pattern of POMC processing are considered to depend on the relative expression levels of PC1 and PC2, PC1 and PC2 mRNAs were examined in corticotrophs during postnatal development. We found a decrease in the number of PC2 mRNA-positive cells, which coincided with one in the number of alpha-MSH-immunopositive corticotrophs, as postnatal development proceeded. Our present data demonstrate that the alpha-MSH production varies directly in accordance with the expression of PC2. We also discuss the possible significance of alpha-MSH production during the postnatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号