首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plasmid foroptimizedproteinexpression of recombinant Fv antibodies (pOPE) inE. coli was used to express the variable domains of the murine monoclonal antibody HD39 specific for the human B-cell surface antigen CD22. The production of Fv antibodies by pOPE can be regulated over a wide range by varying the IPTG concentration. Antibodies that can discriminate between secreted and nonsecreted Fv antibody fragments were used to show that secretion is the limiting step for the production of functional Fv antibodies. IPTG concentrations above 20 μM increased the total antibody production, but did not yield larger amounts of secreted Fv antibodies. The addition of five histidines to the C terminus facilitates an easy single-step enrichment procedure based on immobilized metal affinity chromatography.  相似文献   

2.

Background

Cytomegalovirus (CMV) is the most common infectious cause of mental disability in newborns in developed countries. There is an urgent need to establish an early detection and high-throughput screening method for CMV infection using portable detection devices.

Methods

An antibody analysis method is reported for the detection and identification of CMV antibodies in serum using a biosensor based on high spatial resolution imaging ellipsometry (BIE). CMV antigen (CMV-3A) was immobilized on silicon wafers and used to capture CMV antibodies in serum. An antibody against human immunoglobulin G (anti-IgG) was used to confirm the IgG antibody against CMV captured by the CMV-3A.

Results

Our results show that this assay is rapid and specific for the identification of IgG antibody against CMV. Further, patient serum was quantitatively assessed using the standard curve method, and the quantitative results were in agreement with the enzyme-linked immunosorbent assay. The CMV antibody detection sensitivity of BIE reached 0.01 IU/mL.

Conclusions

This novel biosensor may be a valuable diagnostic tool for analysis of IgG antibody against CMV during CMV infection screening.  相似文献   

3.
Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP89-104) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an internal image of protease is described. The second order monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.  相似文献   

4.

Objectives

Domestic dogs are the main reservoir of rabies virus (RABV) infection in Nigeria, thus surveillance of rabies in dog populations is crucial in order to understand the patterns of spread of infection and ultimately devise an appropriate rabies control strategy. This study determined the presence of lyssavirus antigen in brain tissues and anti-rabies antibodies in sera of apparently healthy and suspected-rabid dogs slaughtered for human consumption at local markets in South-Eastern Nigeria.

Results

Our findings demonstrated that 8.3% (n?=?23) of brain tissues were lyssavirus positive and 2.5% (n?=?25) of sera had rabies antibody levels as percentage blocking of 70% and above correlating with a cut-off value?≥?0.5 IU/mL in the fluorescent antibody neutralization test. There was an inverse correlation between lyssavirus positivity and rabies antibody levels confirming that infected individuals most often do not develop virus neutralizing antibodies to the disease. The low percentage of rabies antibodies in this dog population suggests a susceptible population at high risk to RABV infection. These findings highlight a huge challenge to national rabies programs and subsequent elimination of the disease from Nigeria, considering that majority of dogs are confined to rural communal areas, where parenteral dog vaccination is not routinely undertaken.
  相似文献   

5.

Background

HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation.

Methods

55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i) DSA levels and ii) rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified.

Results

Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002), even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00).

Conclusion

In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection.  相似文献   

6.
Summary Two different bispecific hybrid antibodies were established by fusing a hybridoma producing monoclonal antibody (mAb) against the pancarcinoma antigen KS1/4 with either of the two hybridomas OKT3 and 9.3, secreting antibodies reactive with the T cell determinants CD3 and CD28, respectively. The KS1/4 antibody reacts with a 40-kDa cell-surface glycoprotein antigen that is expressed on the surface of a variety of adenocarcinoma cells, including ovarian carcinoma. The ability of the bispecific antibodies 9.3KS1/4 and OKT3KS1/4 to direct peripheral blood mononuclear cells (PBMC) specifically against OVCAR-3 ovarian carcinoma target cells was measured in a 4-h51Cr-release assay. The bispecific antibodies were four to six times more potent in killing the OVCAR-3 target cells when compared to their parental antibodies either alone or in combination. A dose-dependent response was observed in the 10–10000 ng/ml range. The specificity of the targeting was demonstrated by the complete inhibition of cytotoxic activity following pre-incubation of tumor target cells with the parental mAb and by the lack of killing of KS1/4-negative target cell lines. An evaluation of the efficacy of PBMC from ovarian cancer patients as effector cells revealed that their specific cytotoxicity against OVCAR-3 cells was enhanced severalfold by bispecific antibodies as compared to parental antibodies. Furthermore, stimulation of PBMC with immobilized CD3 and interleukin-2 for 4 days resulted in an enhanced directed killing of human ovarian carcinoma cells by human T effector cells and the bispecific antibodies.  相似文献   

7.
Human erythrocyte glycophorin was desialylated by mild acid hydrolysis and degalactosylated by Smith degradation. Two monoclonal antibodies (Tn5 and Tn56) obtained by immunization of mice with this artificial Tn antigen were characterized and compared in some experiments with two antibodies (BRIC111 and LM225) obtained in other laboratories by immunization with Tn erythrocytes. The specific binding of the antibodies to glycophorins desialylated and degalactosylated on the nitrocellulose blot and to asialo-agalactoglycophorin-coated ELISA plates, and reactions with authentic Tn antigen served for identification of their anti-Tn specificity. The antibodies were further characterized in inhibition assay with various glycoproteins. The antibody Tn5 (similar to BRIC111) was shown to be specific for human erythrocyte Tn antigen, whereas Tn56 reacted strongly with different glycoproteins carrying O-linked GalNAc- residues, and was strongly bound to the murine adenocarcinoma cell line Ta3-Ha. The antibodies Tn5, Tn56 and BRIC111 were similarly inhibited by ovine submaxillary mucin (OSM) and asialoOSM, but the antibody LM225 showed a distinct preference in reaction with OSM (sialosyl-Tn antigen). The results show that Tn antigen, obtained by chemical modifications of human glycophorin, enables the preparation and characterization of anti-Tn monoclonal antibodies, without using rare Tn erythrocytes.Abbreviations HuGph human erythrocyte glycophorin - HoGph horse erythrocyte glycophorin - OSM ovine submaxillary mucin - mAb monoclonal antibody - ELISA enzyme-linked immunosorbent assay - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - PBS phosphate buffered saline (0.01m Na2HPO4/0.15m NaCl, pH 7.2) - BSA bovine serum albumin - TBS 0.05m Tris-HCl/0.15m NaCl, pH 7.2 - TGr transformation grade  相似文献   

8.
Off-target binding can significantly affect the pharmacokinetics (PK), tissue distribution, efficacy and toxicity of a therapeutic antibody. Herein we describe the development of a humanized anti-fibroblast growth factor receptor 4 (FGFR4) antibody as a potential therapeutic for hepatocellular carcinoma (HCC). A chimeric anti-FGFR4 monoclonal antibody (chLD1) was previously shown to block ligand binding and to inhibit FGFR4-mediated signaling as well as tumor growth in vivo. A humanized version of chLD1, hLD1.vB, had similar binding affinity and in vitro blocking activity, but it exhibited rapid clearance, poor target tissue biodistribution and limited efficacy when compared to chLD1 in a HUH7 human HCC xenograft mouse model. These problems were traced to instability of the molecule in rodent serum. Size exclusion high performance liquid chromatography, immunoprecipitation and mass spectral sequencing identified a specific interaction between hLD1.vB and mouse complement component 3 (C3). A PK study in C3 knock-out mice further confirmed this specific interaction. Subsequently, an affinity-matured variant derived from hLD1.vB (hLD1.v22), specifically selected for its lack of binding to mouse C3 was demonstrated to have a PK profile and in vivo efficacy similar to that of chLD1 in mice. Although reports of non-specific off-target binding have been observed for other antibodies, this represents the first report identifying a specific off-target interaction that affected disposition and biological activity. Screens developed to identify general non-specific interactions are likely to miss the rare and highly specific cross-reactivity identified in this study, thus highlighting the importance of animal models as a proxy for avoiding unexpected clinical outcomes.Key words: antibody humanization, non-specific binding, fibroblast growth factor receptor 4, affinity maturation, off-target binding, complement C3Antibodies are an attractive source of biotherapeutic agents due to their high affinity, exquisite target selectivity and extended half-life in vivo. Their development for therapeutic applications has been facilitated by hybridoma technology, antibody humanization and numerous in vitro antibody selection technologies that enable antibodies with desired biological properties to be engineered at will.Co-incident with this increase in the in vitro development of antibodies for therapeutic applications has been the recognition of how antibodies evolve in vivo. Several studies have pointed to the relationship between antibody affinity and antigen specificity.16 The conformational flexibility of initial recombined antibodies is considered to be an important feature of the immune system''s ability to generate antibodies against a broad spectrum of antigens. During antibody maturation, this structural plasticity is thought to be restricted through somatic hypermutation in vivo (and perhaps affinity maturation in vitro) leading to a reduced entropy cost for specific antigen binding and a corresponding increase in antigen specificity. The increase in antigen specificity helps to eliminate undesired off-target antibody interactions, and serves as part of immune system checkpoints designed to prevent autoimmune disease.In contrast, antibodies that are generated in vitro lack any regulatory immune surveillance. For these, various screens utilizing protein chips and microarrays have been developed in order to evaluate or anticipate off-target interactions.79 In one study comparing antibodies against TNFα, for example, multiple off-target interactions were found for adalimumab, an antibody derived in vitro from a cloned human antibody phage library.7 However, such screens are artificial and whether any observed non-specific off-target binding events result in adverse side effects in vivo or actually take place in vivo has yet to be demonstrated.Recently, affinity matured variants of palivizumab were found to have a less than anticipated increase in potency as a prophylactic treatment in a rat model of respiratory syncytial virus (RSV). The variants unexpectedly exhibited broad tissue binding that led to their rapid clearance and low target tissue bioavailability.10 Reversion of some of the amino acid changes incorporated during affinity maturation diminished much of the non-specific tissue binding and improved efficacy and pharmacokinetics. Direct interactions leading to the broad non-specific tissue binding were thus identified and removed, enabling the development of a more effective variant of palivizumab. This is the first report correlating broad tissue cross-reactivity in vitro with rapid clearance and poor tissue bioavailability.The likelihood of identifying an off-target binding event is a function of the size of the protein repertoire and the affinity that is considered relevant.11 Given the huge complexity of an in vivo system and the typically high therapeutic dosing in a clinical setting, the odds of an off-target event that affects efficacy, clearance, tissue bioavailability or toxicity are greatly increased. Such antigen promiscuity in an antibody may arise from the recognition of structurally related epitopes (molecular mimicry), the utilization of overlapping or independent antibody paratopes or through conformational flexibility that enables the complementary-determining regions (CDRs) or side chains of an antibody to adapt to more than one antigen.12,13In contrast to the broad non-specific off-target recognition and antibody polyspecificity described above, here we report an unexpected specific off-target binding event we identified for a humanized antibody directed toward fibroblast growth factor receptor (FGFR) 4. The FGFR signaling system plays critical roles in a variety of normal developmental and physiological processes, and aberrant signaling may lead to tumor development and progression.14 FGFR4 has been shown to play a modulatory role in the development and progression of hepatocellular carcinoma (HCC) in mice, and potentially in humans. A chimeric anti-FGFR4 monoclonal antibody (chLD1) was previously shown to block ligand binding, inhibit FGFR4-mediated signaling and inhibit HCC tumor growth in vivo.14 Following the humanization of chLD1, we observed an unexpected loss of efficacy in a mouse tumor model, although the humanized variant had identical affinity for FGFR4. This variant was found to cross-react with an abundant mouse serum protein. This specific off-target interaction interfered with FGFR4 binding, altered antibody clearance, impacted target tissue distribution, resulting in reduced therapeutic activity. Subsequently we eliminated this off-target binding through affinity maturation of the humanized antibody leading to the full restoration of the in vivo properties inherent in chLD1.This work illustrates some of the challenges that extend well beyond simple antibody-antigen binding and serves as a cautionary tale to therapeutic antibody development.  相似文献   

9.
Field pea (Pisum sativum L.) appears well suited for the production of high-value molecules such as recombinant antibodies, with well-established agricultural practices world-wide and seeds that are easily stored and distributed. In order to evaluate the suitability of this grain legume for the production of biologically active antibodies, we transformed peas with a cDNA encoding the single-chain Fv fragment scFvT84.66. This scFv is derived from the monoclonal antibody T84.66, which recognises the well-characterised tumour-associated carcinoembryonic antigen. The antibody is useful for in vitro immunodiagnosis and in vivo imaging of human cancers. We expressed scFvT84.66 cDNA under the control of the seed-specific legumin A promoter. We targeted the antibody to the endoplasmic reticulum for better stability and high accumulation. Transgenic plants produced up to 9 g per gram fresh weight of functional scFvT84.66 in their seeds. The transgene was stably inherited and expressed in the progeny, and the antibody remained active after storage in dried transgenic seeds for two months at room temperature. Our results demonstrate the suitability of grain legume seeds to produce biologically active recombinant antibodies, and the utility of field pea seeds as production vehicles for recombinant pharmaceutical macromolecules.  相似文献   

10.

Background

Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication.

Methods

We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice.

Results

Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens.

Conclusions

If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput evaluation of future trachoma vaccines.  相似文献   

11.

Background

Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were generated against it. The analysis of the reactivity of those monoclonal antibodies suggested that the N-terminal domain might contain more antigenic epitopes than the C-terminal domain. In the same study, two broadly reactive monoclonal antibodies were observed to react with genogroup I recombinant protein.

Results

In the present study, we used the recombinant capsid protein of genogroup I and characterized the obtained 17 monoclonal antibodies by using 19 overlapping fragments. Sixteen monoclonal antibodies recognized sequential epitopes on three antigenic regions, and the only exceptional monoclonal antibody recognized a conformational epitope. As for the two broadly reactive monoclonal antibodies generated against genogroup II, we indicated that they recognized fragment 2 of genogroup I. Furthermore, genogroup I antigen from a patient's stool was detected by sandwich enzyme-linked immunosorbent assay using genogroup I specific monoclonal antibody and biotinated broadly reactive monoclonal antibody.

Conclusion

The reactivity analysis of above monoclonal antibodies suggests that the N-terminal domain may contain more antigenic epitopes than the C-terminal domain as suggested in our previous study. The detection of genogroup I antigen from a patient's stool by our system suggested that the monoclonal antibodies generated against E. coli expressed capsid protein can be used to detect genogroup I antigens in clinical material.  相似文献   

12.

Background

Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output.

Methodology/Principal Findings

This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA) does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS), activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA.

Conclusions/Significance

These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production.  相似文献   

13.
We investigated the suitability of transformed rice cell lines as a system for the production of therapeutic recombinant antibodies. Expression constructs encoding a single-chain Fv fragment (scFvT84.66, specific for CEA, the carcinoembryonic antigen present on many human tumours) were introduced into rice tissue by particle bombardment. We compared antibody production levels when antibodies were either secreted to the apoplast or retained in the endoplasmic reticulum (ER) using a KDEL retention signal. Production levels were up to 14 times higher when antibodies were retained in the ER. Additionally, we compared constructs encoding different leader peptides (plant codon optimised murine immunoglobulin heavy and light chain leader peptides) and carrying alternative 5 untranslated regions (the petunia chalcone synthase gene 5 UTR and the tobacco mosaic virus omega sequence). We observed no significant differences in antibody production levels among cell lines transformed with these constructs. The highest level of antibody production we measured was 3.8gg–1 callus (fresh weight). Immunological analysis of transgenic rice callus confirmed the presence of functional scFvT84.66. We discuss the potential merits of cell culture for the production of recombinant antibodies and other valuable macromolecules.  相似文献   

14.

Background

Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA.

Results

The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum.

Conclusion

Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.  相似文献   

15.

Background

Trypanosome-derived lymphocyte triggering factor (TLTF) is a molecule released by African trypanosomes that interacts with the host immune system, resulting in increased levels of IFN-γ production.

Methodology/Principal findings

TLTF and anti-TLTF antibodies were assessed in sera and cerebrospinal fluid (CSF) from patients infected with Trypanosoma brucei gambiense (T. b. gambiense) in an attempt to identify alternative markers for diagnosis and stage determination of human African trypanosomiasis or sleeping sickness. Seventy-four serum and sixty-one CSF samples from patients with parasitologically confirmed infection and known disease stage along with 13 sera and CSF from uninfected controls were tested. In serum the levels of anti-TLTF antibodies were unrelated to the disease stage. In contrast, levels of anti-TLTF antibodies in CSF were higher in intermediate/late stages than in early stage disease patients. Specificity of the detected antibodies was assessed by inhibition of TLTF bioactivity as represented by its ability to induce IFN-γ production. Additionally, TLTF was detected in CSF from late stage patients by Western blotting with the anti-TLTF specific monoclonal antibody MO3.

Conclusions/Significance

These findings suggest a new possibility for disease diagnosis with focus on involvement of the CNS through detection of TLTF and anti-TLTF antibodies in the CSF.  相似文献   

16.
BACKGROUND: Measuring antibody production in response to antigen exposure or vaccination is key to disease prevention and treatment. Our understanding of the mechanisms involved in the antibody response is limited by a lack of sensitive analysis methods. We address this limitation using multiplexed microsphere arrays for the semi -quantitative analysis of antibody production in response to malaria infection. METHODS: We used microspheres as solid supports on which to capture and analyze circulating antibodies. Antigen immobilized on beads captured antigen-specific antibodies for semi- quantitative analysis using fluorescent secondary antibodies. Anti-immunoglobulin antibodies on beads captured specific antibody isotypes for affinity estimation using fluorescent antigen. RESULTS: Antigen-mediated capture of plasma antibodies enables determination of antigen-specific antibody "titer," a semi-quantitative parameter describing a convolution of antibody abundance and avidity, as well as parameters describing numbers of antibodies bound/bead at saturation and the plasma concentration-dependent approach to saturation. Results were identical in single-plex and multiplex assays, and in qualitative agreement with similar parameters derived from ELISA-based assays. Isotype-specific antibody-mediated capture of plasma antibodies allowed the estimation of the affinity of antibody for antigen. CONCLUSION: Analysis of antibody responses using microspheres and flow cytometry offer significant advantages in speed, sample size, and quantification over standard ELISA-based titer methods.  相似文献   

17.
A multi-channel sandwich microgravimetric immunoassay (sMIA), using the quartz crystal microbalance (QCM) principle, has been developed to quantify low molecular weight substances in standard solutions. An antigen is sandwiched between two antigen-specific antibodies: the first antibody is coated on the quartz crystal surface and the second antibody is used for the detection of analyte. The concentration of low molecular weight antigen (insulin was used in this study, M r6000 Da) was correlated with the shift of resonant frequency of QCM system before and after second antibody binding to insulin. The developed assay is highly specific showing low cross-reactivity, and is sensitive to approx. 1 ng insulin ml–1 with a linear response for insulin from 10 g ml–1 to 10 ng ml–1 in standard solutions. The technique may also be applied for the detection of other small biomolecules.  相似文献   

18.
19.

Background

We describe a method for printing protein microarrays, and using these microarrays in a comparative fluorescence assay to measure the abundance of many specific proteins in complex solutions. A robotic device was used to print hundreds of specific antibody or antigen solutions in an array on the surface of derivatized microscope slides. Two complex protein samples, one serving as a standard for comparative quantitation, and the other representing an experimental sample in which the concentrations of specific proteins were to be measured, were labeled by covalent attachment of spectrally-resolvable fluorescent dyes. Specific antibody-antigen interactions localized specific components of the complex mixtures to defined cognate spots in the array, where the relative intensity of the fluorescent signals representing the experimental sample and the reference standard provided a measure of each protein's abundance in the experimental sample. To characterize the specificity, sensitivity and accuracy of this assay, we analyzed the performance of 115 antibody/antigen pairs.

Results

50% of the arrayed antigens, and 20% of the arrayed antibodies, provided specific and accurate measurements of their cognate ligands at or below concentrations of 1.6 µg/ml and 0.34 µg/ml, respectively. Some of the antibody/antigen pairs allowed detection of the cognate ligands at absolute concentrations below 1 ng/ml, and partial concentrations of less than 1 part in 106, sensitivities sufficient for measurement of many clinically important proteins in patient blood samples.

Conclusions

Protein microarrays can provide a simple and practical means to characterize patterns of variation in hundreds or thousands of different proteins, in clinical or research applications.  相似文献   

20.

Background

A natural bispecific antibody, which can be produced by exchanging Fab arms of two IgG4 molecules, was first described in allergic patients receiving therapeutic injections with two distinct allergens. However, no information has been published on the production of natural bispecific antibody in animals. Even more important, establishment of an animal model is a useful approach to investigate and characterize the naturally occurring antibody.

Methodology/Principal Findings

We demonstrated that a natural bispecific antibody can also be generated in New Zealand white rabbits by immunization with synthesized conjugates. These antibodies showed bispecificity to the components that were simultaneously used to immunize the animals. We observed a trend in our test animals that female rabbits exhibited stronger bispecific antibody responses than males. The bispecific antibody was monomeric and primarily belonged to immunoglobulin (Ig) G. Moreover, bispecific antibodies were demonstrated by mixing 2 purified monospecific antibodies in vivo and in vitro.

Conclusions/Significance

Our results extend the context of natural bispecific antibodies on the basis of bispecific IgG4, and may provide insights into the exploration of native bispecific antibodies in immunological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号