首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper deficiency results in alterations in lipid metabolism that include elevations in serum cholesterol and triglycerides and a decrease in whole-body respiratory quotient. Copper-deficient animals are also leaner even though electron micrographs of the myocardium present increased lipid droplet accumulation. To address whether a compromised copper status impacts triglyceride deposition in a tissue-specific manner, the activity of lipoprotein lipase was measured in adipose tissue and cardiac and skeletal muscle. Weanling rats fed a copper-restricted diet (<1 ppm) for 6 wk demonstrated a greater than twofold increase in cardiac lipoprotein lipase activity concomitant with a significant reduction in adipose tissue lipoprotein lipase activity. Skeletal muscle lipoprotein lipase activity was not altered by the copper-deficient state. The results of this study suggest that copper deficiency may induce a tissue-specific alteration in lipoprotein lipase activity in rats, which may contribute to the notable deposition of lipid substance in myocardium and the concomitant general body leanness.  相似文献   

2.
Statins are hypolipidemic drugs which not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-reducing effect involves inhibition of de novo biosynthesis of cellular cholesterol through competitive inhibition of its rate-limiting enzyme 3-hydroxy-3-methylglutaryl CoA reductase, the mechanism by which they lower triglycerides remains unknown and forms the subject of the current study. Treatment of normal rats for 4 days with simvastatin decreased serum triglycerides significantly, whereas it increased high density lipoprotein cholesterol moderately. The decrease in triglyceride concentrations after simvastatin was caused by a reduction in the amount of very low density lipoprotein particles which were of an unchanged lipid composition. Simvastatin administration increased the lipoprotein lipase mRNA and activity in adipose tissue and heart. This effect on lipoprotein lipase was accompanied by decreased mRNA as well as plasma levels of the lipoprotein lipase inhibitor apolipoprotein C-III. These results suggest that the triglyceride-lowering effect of statins involves a stimulation of lipoprotein lipase-mediated clearance of triglyceride-rich lipoproteins.  相似文献   

3.
The measurement of triglyceride lipase activity in microgram and nanogram quantities of tissue is reported. The method involves quantitation of glycerol released from a triglyceride substrate, which is shown to provide a value of approximately one-third of that obtained by quantitation of free fatty acid release. Influences on glycerol release, including pH optimum, NaCl inhibition, and activation by serum and heparin are characterized. Two separate assays are described for the measurement of glycerol that yield identical results with nanogram quantities of tissue. The advantage of one assay is its simplicity, while the advantage of the other is that it can be adjusted to measure very small tissue samples (nanogram) with the use of microanalytical procedures (i.e., enzymatic amplification of the NAD+ product of glycerol analysis). Sensitivity of the method is demonstrated by the analysis of triglyceride lipase activity in nanogram samples of single soleus muscle fibers. Measurement of picomole quantities of glycerol produced by lipase activity in single muscle fibers represents at least a 1,000-fold increase in sensitivity compared to currently available methods.  相似文献   

4.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

5.
PURPOSE OF REVIEW: The lipolytic catabolism of stored fat in adipose tissue supplies tissues with fatty acids as metabolites and energy substrates during times of food deprivation. This review focuses on the function of recently discovered enzymes in adipose tissue lipolysis and fatty acid mobilization. RECENT FINDINGS: The characterization of hormone-sensitive lipase-deficient mice provided compelling evidence that hormone-sensitive lipase is not uniquely responsible for the hydrolysis of triacylglycerols and diacylglycerols of stored fat. Recently, three different laboratories independently discovered a novel enzyme that also acts in this capacity. We named the enzyme 'adipose triglyceride lipase' in accordance with its predominant expression in adipose tissue, its high substrate specificity for triacylglycerols, and its function in the lipolytic mobilization of fatty acids. Two other research groups showed that adipose triglyceride lipase (named desnutrin and Ca-independent phospholipase A2zeta, respectively) is regulated by the nutritional status and that it might exert acyl-transacylase activity in addition to its activity as triacylglycerol hydrolase. Adipose triglyceride lipase represents a novel type of 'patatin domain-containing' triacylglycerol hydrolase that is more closely related to plant lipases than to other known mammalian metabolic triacylglycerol hydrolases. SUMMARY: Although the regulation of adipose triglyceride lipase and its physiological function remain to be determined in mouse lines that lack or overexpress the enzyme, present data permit the conclusion that adipose triglyceride lipase is involved in the cellular mobilization of fatty acids, and they require a revision of the concept that hormone-sensitive lipase is the only enzyme involved in the lipolysis of adipose tissue triglycerides.  相似文献   

6.
Rat heart and skeletal muscle homogenates were compared for their intracellular lipolytic activity towards a series of saturated and unsaturated triglycerides from trilaurin (C12:0) to trierucin (C22:1). It is shown that for all triglycerides esterified with fatty acids from C12 to C18, lipolytic activity in heart homogenates was higher than in skeletal muscle homogenates. For these triglycerides there was no relationship between the fatty acid chain length and the lipolytic activity. In both homogenates cleavage of unsaturated triglycerides was higher than cleavage of the homologous saturated triglyceride. Lipolysis of tri-delta-11-eicosenoin (C20:1) was similar in both homogenates but much lower than lypolysis of other triglycerides. Although cleavage of trierucin (C22:1) was very low in skeletal muscle homogenates, it was undetectable in heart homogenates, even when enzyme concentration was increased. A mixture of triglycerides did not show preferential hydrolysis of any simple triglyceride. Trierucin was the only triglyceride that did not complete for lipolytic activity and only with heart homogenates, which shows that that lipase(s) do not cleave trierucin. The absence of lipolytic activity towards trierucin in heart homogenates could explain the selective accumulation of erucic acid-rich triglycerides in hearts of animals fed a diet with a high erucic acid content.  相似文献   

7.
The composition of the triglycerides of liver, egg yolk and adipose tissue of laying hens fed on a standard diet were investigated by using argentation thin-layer chromatography to separate the triglycerides according to their degree of unsaturation. About 40% of liver triglycerides consisted of one saturated and two monoenoic fatty acids. Triglycerides containing linoleate were more abundant in adipose tissue than in either yolk or liver. Hydrolysis by pancreatic lipase of the tissue triglycerides and fractions obtained from these triglycerides showed that the triglycerides of adipose tissue had a less ordered arrangement of fatty acids at the 2-position than did either yolk or liver triglycerides. The labelling patterns of triglycerides formed in liver slices incubated in the presence of [1-(3)14C]glycerol indicated that triglycerides containing four or more double bonds are formed to a greater extent than are other triglyceride fractions. This is evidence for the concept that the type of triglyceride formed depends on the availability of fatty acids to the liver cells.  相似文献   

8.
This study evaluated the effects of beta 2-adrenoceptor stimulation on some determinants of triglyceride metabolism. Male Sprague-Dawley rats were injected twice daily with clenbuterol (30 micrograms.kg-1) for 7 days, or with an equivalent volume of vehicle. Serum triglycerides, hepatic triglyceride secretion rate, and lipoprotein lipase activity in white and brown adipose tissues as well as in red vastus lateralis muscle and heart were evaluated in the fasting state and following a fat-free, high-sucrose meal, 3 h after the last agonist injection. In rats killed in the fasting and postprandial states, clenbuterol reduced the mass of white adipose tissue (-25 and -12%, respectively; p < 0.02), whereas it increased the mass of vastus lateralis muscle (+11 and +7%; p < 0.002) and heart (+13 and %; p < 0.0001). In vehicle-injected animals, the fasting state was associated with lower lipoprotein lipase activity in white and brown adipose tissues, and higher enzyme activity in vastus lateralis and heart, compared with the postprandial state. Postprandially, treatment with clenbuterol reduced lipoprotein lipase activity in white adipose (-24%), whereas it increased enzyme activity in brown adipose (+107%) as well as in vastus lateralis (+35%). In fasted animals, no significant variation of enzyme activity in these tissues was observed following clenbuterol treatment, whereas in the heart, a decrease of lipoprotein lipase activity was observed (-22%). Clenbuterol lowered serum triglycerides significantly (-23%), but not their rate of secretion, whereas the agonist decreased the insulin to glucagon ratio only in the postprandial state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
PURPOSE OF REVIEW: To summarize recent data indicating that glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) plays a key role in the lipolytic processing of chylomicrons. RECENT FINDINGS: Lipoprotein lipase hydrolyses triglycerides in chylomicrons at the luminal surface of the capillaries in heart, adipose tissue, and skeletal muscle. The endothelial cell molecule that facilitates the lipolytic processing of chylomicrons has never been clearly defined. Mice lacking GPIHBP1 manifest chylomicronemia, with plasma triglyceride levels as high as 5000 mg/dl. In wild-type mice, GPIHBP1 is expressed on the luminal surface of capillaries in heart, adipose tissue, and skeletal muscle. Cells transfected with GPIHBP1 bind both chylomicrons and lipoprotein lipase avidly. SUMMARY: The chylomicronemia in Gpihbp1-deficient mice, the fact that GPIHBP1 is located within the lumen of capillaries, and the fact that GPIHBP1 binds lipoprotein lipase and chylomicrons suggest that GPIHBP1 is a key platform for the lipolytic processing of triglyceride-rich lipoproteins.  相似文献   

10.
Three compounds capsaicin, curcumin and ferulic acid showing hypolipidemic activity have been tested in adult Wistar rats fed high fat diets. Capsaicin (0.20 mg%) fed to female rats along with a 30% saturated fat diet lowered the rate of weight gain, liver and serum triglycerides. In male rats it lowered only the liver and serum total and very low density and low density lipoprotein triglycerides whether fed continuously for 13 or 8 weeks after interchanging the control and test diets from the 5th week onwards. Capsaicin fed to female rats in 30% mixed fat diet increased the rate of weight gain, lowered liver and serum triglycerides, lowered adipose tissue lipoprotein lipase, elevated the hormone sensitive lipase and serum free fatty acids. Capsaicin in 30% saturated fat diet lowered both the enzyme activities to a much lesser extent. Curcumin and ferulic acid (both at 25 mg%) in 30% saturated fat diet tended to lower the rate of weight gain, liver total lipids and serum triglycerides. It is of significance that a common dietary compound ‘capsaicin’ in the range of human intake triggers lipid lowering action in rats fed high fat diets. This paper was presented at the 55th Annual Meeting of the Society of Biological Chemists (India) held at Trivandrum during December 15–17th, 1986.  相似文献   

11.
Lipoprotein lipase was assayed in extracts of acetone-ether powders of rat skeletal muscles. Enzyme activity in soleus had typical characteristics of lipoprotein lipase in other tissues: inhibition by molar NaCl and protamine sulfate and activation by the human apolipoprotein, R-glutamic acid. Activity in muscles with predominantly red fibers (soleus, diaphragm, lateral head of gastrocnemius and anterior band of semitendinosus) was higher than in those with predominantly white fibers (body of gastrocnemius and posterior band of semitendinosus). No effect of a 24 hour fast upon enzyme activity was observed in ten skeletal muscles, but activity decreased substantially in four adipose tissue depots and increased slightly in heart muscle with fasting. Four minutes after intravenous injection of labeled lymph chylomicrons, skeletal muscles with predominantly red fibers incorporated several times more chylomicron triglyceride fatty acids than thos with predominantly white fibers. Estimated lipoprotein lipase activity in total skeletal muscle was about two-thirds that in total adipose tissue of rats fed ad libitum. After a 24 hour fast, total activity in skeletal muscle was about twice that in adipose tissue. These data suggest that a substantial fraction of lipoprotein lipase is in skeletal muscle of rats and that this tissue, especially its red fibers, is an important site of removal of triglycerides from the blood.  相似文献   

12.
ObjectiveOur aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance.ResultsHealthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.  相似文献   

13.
We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.  相似文献   

14.
Letting lipids go: hormone-sensitive lipase   总被引:6,自引:0,他引:6  
PURPOSE OF REVIEW: Despite their pathophysiological importance, the molecular mechanisms and enzymatic components of lipid mobilization from intracellular storage compartments are insufficiently understood. The aim of this review is to evaluate the role of hormone-sensitive lipase in this process. RECENT FINDINGS: Hormone-sensitive lipase exhibits a broad specificity for lipid substrates such as triglycerides, diglycerides, cholesteryl esters, and retinyl esters and the enzyme is in a wide variety of tissues. The high enzyme activity in adipose tissue was considered rate-limiting in the degradation of stored triglycerides. This view of a single enzyme controlling the catabolism of stored fat was challenged by recent findings that in hormone-sensitive lipase deficient mice adipose tissue triglycerides were still hydrolyzed and that these animals were leaner than normal mice. These results indicated that in adipose tissue hormone-sensitive lipase cooperates with other yet unidentified lipases to control the mobilization of fatty acids from cellular depots and that this process is coordinately regulated with lipid synthesis. Induced mutant mouse lines that overexpress or lack hormone-sensitive lipase also provided evidence that hormone-sensitive lipase-mediated cholesteryl ester hydrolysis is involved in steroid-hormone production in adrenals and affects testis function. Finally, hormone-sensitive lipase deficiency in mice results in a lipoprotein profile characterized by low triglyceride and VLDL levels and increased HDL cholesterol concentrations. SUMMARY: The 'anti-atherosclerotic' plasma lipoprotein profile and the fact that hormone-sensitive lipase deficient animals become lean identifies the inhibition of hormone-sensitive lipase as a potential target for the treatment of lipid disorders and obesity.  相似文献   

15.
Medium chain triglycerides are considered to be readily absorbed intact in the absence of pancreatic lipase, unlike long chain triglycerides. Commercial medium chain triglyceride oils comprise various medium chain fatty acids from 6 to 12 carbons in length resulting in triglyceride molecules of different sizes and molecular weights. The effect of molecular weight and hence fatty acid chain length on the efficiency of intact medium chain triglyceride absorption is unknown. Therefore, this study measured, using a single-pass marker perfusion technique, intestinal jejunum absorption of five medium chain and one long chain triglycerides in anesthetized Sprague-Dawley rats. The molecular weights of the five medium chain triglycerides were 470.7, 498.8, 526.8, 554.9, 639.0, and the long chain triglyceride, 885.4. Residual luminal pancreatic lipase was removed prior to lipid perfusion. This study demonstrated that medium chain triglycerides were absorbed in the absence of lipase whereas long chain triglyceride was not. There was no significant variation in the absorption of the five different medium chain triglycerides perfused. The molecular weight of the medium chain triglyceride did not affect its intact absorption by the small intestine.  相似文献   

16.
Anti-lipoprotein lipase sera injected intravenously in roosters blocked quantitatively the catabolism of very low density lipoprotein (VLDL) triglyceride. Antibodies were produced in rabbits immunized with highly purified lipoprotein lipase (LPL, glycerol ester hydrolase, E C 3.1.1.3) prepared from chicken adipose tissue. Following anti-LPL serum injection there was a linear increase in plasma triglyceride concentration. The rate of entry of triglyceride in plasma was estimated from the rate of triglyceride accumulation in the plasma of animals injected with anti-LPL serum, or from the disappearance curve of biologically labelled VLDL. In instances where both measurements were conducted in the same animals there was very close agreement between the two procedures. Inhibition of VLDL triglyceride catabolism of anti-LPL serum provided a way to characterize newly secreted VLDL that exhibited a broad spectrum of particle sizes with a median of 625 A degrees. They contained 76.2 +/- 1.2% triglyceride and had a high ratio of free to ester cholesterol (2.46 +/- 0.45). In control VLDL samples there was 46.1% triglyceride, and the ratio of free to ester cholesterol was 1.19. The complete inhibition of triglyceride removal by an antiserum prepared against adipose tissue LPL demonstrates that the NaCl-inhibited, serum-activated lipase prepared by affinity chromatography on heparin-Sepharose and concanavalin A-Sepharose columns is the enzyme responsible in vivo for the catabolism of VLDL triglyceride. Further, the kinetics of triglyceride accumulation in the plasma provide evidence that the site of degradation of VLDL triglyceride is within the plasma compartment.  相似文献   

17.
Lipolysis of intracellular triglycerides in the heart has been shown to be regulated by hormones. However, activation of myocardial triglyceride lipase in a cell-free system has not been directly demonstrated. In the present studies, initial attempts to demonstrate cAMP-dependent activation of triglyceride lipase using the 1,000 X g supernatant fraction (S1) of mouse heart homogenate were unsuccessful, presumably due to the masking effects of high levels of lipoprotein lipase activity even when assayed at pH 7.4 and in the absence of apolipoprotein C-II. Myocardial lipoprotein lipase in the 40,000 X g supernatant fraction was then removed by heparin-Sepharose affinity chromatography. The lipoprotein lipase-free fractions were shown to contain neutral triglyceride lipase and neutral cholesterol esterase of about equal activities. The triglyceride lipase and cholesterol esterase activities fell progressively during preincubation in the presence of 5 mM Mg2+. Additions of cAMP and ATP resulted in 40-70% activation of both triglyceride lipase and cholesterol esterase. The activation was blocked by protein kinase inhibitor and was restored by the addition of exogenous cAMP-dependent protein kinase. Since lipoprotein lipase has no activity toward cholesteryl oleate, activation of cholesterol esterase in untreated S1 was readily demonstrable. Both triglyceride lipase and cholesterol esterase activities were present in homogenates prepared from isolated rat heart myocytes. We conclude that the myocardium contains a hormone-sensitive lipase that is regulated in a fashion similar to that of the adipose tissue enzyme.  相似文献   

18.
The purpose of this study was to characterize the lipolytic activity of the alkaline triglyceride lipase in homogenates of three types of skeletal muscle obtained from heparin-perfused rat hindlimb. Specifically, the red portion of the vastus lateralis, the white portion of the vastus lateralis, and the soleus muscles were examined. To remove capillary-bound lipoprotein lipase from the capillary beds, muscle was perfused with an erythrocyte-free buffer containing 4% albumin, 5 units of heparin/mL, and 7.5 microM adenosine. Adenosine reduced perfusion pressure from 117 +/- 5 to 86 +/- 6 mmHg (1 mmHg = 133.32 Pa), providing evidence for an effective vasodilation. This vasodilation increased the amount of lipoprotein lipase removed from the capillary beds. By the end of the experiment, perfusates were lipoprotein lipase-free. Oxygen supply to the perfused hindlimb appeared adequate as evidenced by similar high energy phosphate values for perfused and contralateral control tissues. For example, in soleus muscle, ATP content was 4.5 +/- 0.6 vs. 4.2 +/- 0.3 mumol/g, ADP concentration was 1.0 +/- 0.2 vs. 1.4 +/- 0.2 mumol/g, and creatine phosphate level was 12.9 +/- 0.7 vs. 11.0 +/- 0.6 mumol/g for perfused and contralateral control soleus, respectively. In addition, K+ output by the hindlimb was negligible, while glycolytic flux of perfused muscle was similar to that measured in control tissue. The findings that triglyceride levels of soleus and red vastus lateralis were decreased suggest that endogenous triglyceride was providing energy for the hindlimb during perfusion. Skeletal muscle triglyceride lipase activity was stimulated by serum and heparin, inhibited by NaCl and protamine, and had a pH optimum of 8.1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Exposure of sated rats to 45% N2 in air for 5h increased serum triglyceride levels by 212% over the levels in normoxic rats. This increase in triglyceride levels was accompanied by a decrease in plasma triglyceride hydrolase activity after intravenous injection of heparin. Further fractionation of the activity by inhibition of lipoprotein lipase indicated that the low triglyceride hydrolase activity is mainly due to a reduction in hepatic triglyceride lipase, which is inversely correlated with the serum triglyceride level. The hypoxic exposure decreased the arterial blood [acetoacetate]/[beta-hydroxybutyrate] ratio in the sated rats, which is believed to reflect the oxidation-reduction state in hepatic mitochondria, but did not affect the level of serum enzymes indicative of tissue damage. On the other hand, triglyceride levels did not change during hypoxic exposure in fasted rats. Thus, hypertriglyceridemia in sated rats following exposure to hypoxia may result from impaired removal of circulating triglycerides by hepatic triglyceride lipase located in the sinusoidal surface of the liver.  相似文献   

20.
A new assay procedure for triglyceride lipase [EC 3.1.1.3] was developed in which radioactive triolein was dissolved in ethanol and directly added to the reaction mixture in the absence of serum and albumin. In the rat adipose tissue there appeared to be a triglyceride lipase measurable with this assay in addition to the two previously defined lipases, lipoprotein lipase [EC 3.1.1.34] and hormone-sensitive lipase. The enzyme was active in the absence of serum and was strongly inhibited by albumin. The molecular weight was estimated to be about 42,000. Adenosine 3',5'-monophosphate-dependent protein kinase [EC 2.7.1.27] was unable to activate the enzyme. The three species of lipases mentioned above behaved differently upon chromatography on a Sepharose 4B column, and were distinguishable from each other in their physical and kinetic properties. The physiological roles of the new species of lipase remain to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号