首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin antigen targets that are clearly associated with pathogenic events in multiple sclerosis (M.S.) patients remain to be defined. We recently demonstrated that the analysis of global IgG antibody response against human brain antigens using one-dimensional (1-D) immunoblotting, allowed us to discriminate M.S. patients from controls (both healthy subjects and patients with Sj?gren's syndrome). Additionally, this approach also differentiated the three clinical forms of M.S. Indeed, 42 brain antigenic bands (26 from healthy brain and 16 from the M.S. brain) showed the discriminant IgG immune responses. The aim of our study was to characterize the 26 discriminant antigenic bands detected in healthy brain. Protein identification was successively performed by 1-D and two-dimensional (2-D) immunoblottings using sera from 18 M.S. patients, followed by mass spectrometry (MS) analysis and a database search. One hundred and two antigenic spots were then detected on 2-D immunoblots, with M.S. sera against healthy brains. Sixty-four spots were successfully matched with 2-D Coomassie brillant blue stained gels, which were further selected for MS analysis and annotated leading to the identification of 14 of the 26 discriminant antigens. Thus, serological proteome analysis may provide a useful tool for the identification of potentially new M.S.-associated antigens, whose relevance to physiopathological events remains to be defined.  相似文献   

2.
3.
Huntington's disease (HD) causes widespread CNS changes and systemic abnormalities including endocrine and immune dysfunction. HD biomarkers are needed to power clinical trials of potential treatments. We used multiplatform proteomic profiling to reveal plasma changes with HD progression. Proteins of interest were evaluated using immunoblotting and ELISA in plasma from 2 populations, CSF and R6/2 mice. The identified proteins demonstrate neuroinflammation in HD and warrant further investigation as possible biomarkers.  相似文献   

4.
5.
Systemic sclerosis is a systemic disease that is characterized by tissue fibrosis, small-vessel vasculopathy, and an autoimmune response associated with autoantibodies. We performed serological analysis of cDNA expression library (SEREX) to identify autoantibodies associated with systemic sclerosis. We identified 4 clones that react with sera of patients with SSc but not with those of healthy donors. These clones are phosphoglycerate mutase, centromere autoantigen C, U1 small nuclear ribonucleoprotein, and DNA binding protein B (dbpB). We chose to study autoantibody to DNA binding protein B. Immunoreactivity against recombinant dbpB was detected in 40.5% (15/37) of patients with SSc, 14.6% (6/41) of patents with systemic lupus erythematosus, 6.7% (1/15) of patients with rheumatoid arthritis, 0% (0/12) of patients with Sjogren syndrome, and 5.9% (1/17) of patients with polymyositis/dermatomyositis. The frequency of anti-dbpB was significantly higher in the SSc patients (15/37, 40.5%) compared to the healthy controls (3/41, 7.3%, p=0.0005 by chi(2) test). Eleven patients (11/20, 55%) with the diffuse cutaneous type of SSc had anti-dbpB and 4 patients (4/17, 23.5%) with the limited cutaneous type had anti-dbpB. The presence of anti-dbpB was significantly associated with the diffuse cutaneous type (p=0.00003 by chi(2) test). This is the first report to suggest that autoantibody to dbpB can be used as a serologic marker of systemic sclerosis.  相似文献   

6.
7.
8.
Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1mg/kg per day for 1, 7 and 14 days), methapyrilene (100mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and (3) develop hypotheses regarding mechanisms of toxicity.  相似文献   

9.
Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as bayesian networks, only provide an averaged network for all samples. Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects, which was consistent with the predictions obtained by NetworkProfiler.  相似文献   

10.
Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.  相似文献   

11.

Introduction

Identification of patients who are in early stages of lupus is currently done through clinical evaluation and is not greatly facilitated by available diagnostic tests. Profiling for patient characteristics and antibody specificities that predict disease would enhance the ability of physicians to identify and treat early cases prior to onset of organ damaging illness.

Methods

A group of 22 patients with 4 or fewer diagnostic criteria for lupus were studied for changes in clinical and autoantibody profiles after a mean follow up period of 2.4 years. An array with more than 80 autoantigens was used to profile immunoglobulin G (IgG) and immunoglobulin M (IgM) autoantibodies. Correlations with clinical disease progression were examined.

Results

3 of the 22 patients (14%) added sufficient criteria during follow up to satisfy a diagnosis of systemic lupus erythematosus (SLE) or to acquire a diagnosis of SLE renal disease. Patients who progressed were all females and were younger than those who did not progress (P=0.00054). IgG but not IgM autoreactivity showed greater increases in the progressor group than in the non-progressor group (P=0.047). IgG specificities that were higher at baseline in progressors included proliferating cell nuclear antigen (PCNA), beta 2 microglobulin, C1q and hemocyanin (P<0.019). Progressors had significant increases in La/SSB and liver cytosol type 1 (LC1) IgG autoantibodies over the period of evaluation (P≤0.0072). A quantitative risk profile generated from baseline demographic and autoantibody variables yielded highly different scores for the progressor and non-progressor groups (P=1.38 × 10-7)

Conclusions

In addition to demographic features, autoantibody profiles using an expanded array of specificities were correlated with the risk of progressive disease in patients with lupus. These findings suggest the feasibility of developing a simple diagnostic that could be applied by nonspecialists to screen for lupus and permit effective triage for specialty care.  相似文献   

12.
13.
Antibody suspension bead arrays have proven to enable multiplexed and high‐throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad‐scale protein profiling of CSF within neurological disorders.  相似文献   

14.
Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins.  相似文献   

15.
In this study, we performed extensive proteomic analysis of sperm from the ascidian Ciona intestinalis. Sperm were fractionated into heads and flagella, followed by further separation into Triton X-100-soluble and -insoluble fractions. Proteins from each fraction and whole sperm were separated by isoelectric focusing using two different pH ranges, followed by SDS-PAGE at two different polyacrylamide concentrations. In total, 1,294 protein spots representing 304 non-redundant proteins were identified by mass spectrometry (MALDI-TOF). On comparison of the proteins in each fraction, we were able to identify the proteins specific to different sperm compartments. Further comparison with the testis proteome allowed the pairing of proteins with sperm-specific functions. Together with information on gene expression in developing embryos and adult tissues, these results provide insight into novel cellular and functional aspects of sperm proteins, such as distinct localization of actin isoforms, novel Ca(2+)-binding proteins in axonemes, localization of testis-specific serine/threonine kinase, and the presence of G-protein coupled signaling and ubiquitin pathway in sperm flagella.  相似文献   

16.
17.
《Genomics》2021,113(4):2645-2655
The prevalence of familial multiple sclerosis (FMS) is increasing worldwide which endorses the heritability of the disease. Given that many genome variations are ethnicity-specific and consanguineous marriage could affect genetic diseases, hereditary disease gene analysis among FMS patients from Iran, a country with high rates of parental consanguinity, could be highly effective in finding mutations underlying disease pathogenesis. To examine rare genetic mutations, we selected three Iranian FMS cases with ≥3 MS patients in more than one generation and performed whole exome sequencing. We identified a homozygous rare missense variant in POLD2 (p. Arg141Cys; rs372336011). Molecular dynamics analysis showed reduced polar dehydration energy and conformational changes in POLD2 mutant. Further, we found a heterozygote rare missense variant in NBFP1 (p. Gly487Asp; rs778806175). Our study revealed the possible role of novel rare variants in FMS. Molecular dynamic simulation provided the initial evidence of the structural changes behind POLD2 mutant.  相似文献   

18.
Oncology drug discovery is, by definition, a target-rich enterprise. High-throughput screening (HTS) laboratories have supported a wide array of molecularly targeted and chemical genomic approaches for anticancer lead generation, and the number of hits emerging from such campaigns has increased dramatically. Although automation of HTS processes has eliminated primary screening as a bottleneck, the demands on secondary screening in appropriate cell-based assays have increased concomitantly with the numbers of hits delivered to therapeutic area laboratories. The authors describe herein the implementation of a novel platform using off-the-shelf solutions that have allowed them to efficiently characterize hundreds of HTS hits using a palette of Western blot-based pharmacodynamic assays. The platform employs a combination of a flatbed bufferless SDS-PAGE system, a dry ultra-rapid electroblotting apparatus, and a highly sensitive and quantitative infrared imaging system. Cumulatively, this platform has significantly reduced the cycle time for HTS hit evaluation. In addition, the routine use of this platform has resulted in higher quality data that have allowed the development of structure-activity databases that have tangibly improved lead optimization. The authors describe in detail the application of this platform, designated the Accelerated Pharmaco-Dynamic Profiler (APDP), to the annotation of inhibitors of 2 attractive oncology targets, BRAF kinase and Hsp90.  相似文献   

19.
cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.  相似文献   

20.
Multiple sclerosis (MS) is a primary inflammatory demyelinating disease associated with a probably secondary progressive neurodegenerative component. Impaired mitochondrial functioning has been hypothesized to drive neurodegeneration and to cause increased anaerobic metabolism in MS. The aim of our multicentre study was to determine whether MS patients had values of circulating lactate different from those of controls. Patients (n = 613) were recruited, assessed for disability and clinically classified (relapsing–remitting, secondary progressive, primary progressive) at the Catholic University of Rome, Italy (n = 281), at the MS Centre Amsterdam, The Netherlands (n = 158) and at the S. Camillo Forlanini Hospital, Rome, Italy (n = 174). Serum lactate levels were quantified spectrophotometrically with the analyst being blinded to all clinical information. In patients with MS serum lactate was three times higher (3.04 ± 1.26 mmol/l) than that of healthy controls (1.09 ± 0.25 mmol/l, p < 0.0001) and increased across clinical groups, with higher levels in cases with a progressive than with a relapsing–remitting disease course. In addition, there was a linear correlation between serum lactate levels and the expanded disability scale (EDSS) (R2 = 0.419; p < 0.001). These data support the hypothesis that mitochondrial dysfunction is an important feature in MS and of particular relevance to the neurodegenerative phase of the disease. Measurement of serum lactate in MS might be a relative inexpensive test for longitudinal monitoring of “virtual hypoxia” in MS and also a secondary outcome for treatment trials aimed to improve mitochondrial function in patients with MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号