首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

2.
Examining historical and contemporary processes underlying current patterns of genetic variation is key to reconstruct the evolutionary history of species and implement conservation measures promoting their long-term persistence. Combining phylogeographic and landscape genetic approaches can provide valuable insights, especially in regions harboring high levels of biodiversity that are currently threatened by climate and land cover changes, like southern Iberia. We used genetic (mtDNA and microsatellites) and spatial data (climate and land cover) to infer the evolutionary history and contemporary genetic connectivity in a short-range endemic salamander subspecies, Salamandra salamandra longirostris, using a combination of ecological niche modelling, phylogeographic, and landscape genetic analyses. Ecological-based analyses support a role of the Guadalquivir River Basin as a major vicariant agent in this taxon. The lower genetic diversity and greater differentiation of peripheral populations, together with analyses of climatically stable areas throughout time, suggest the persistence of a population in the central part of the current range since the Last Inter Glacial [LIG; ~?120,000–140,000 years BP], and a micro refugium in the eastern end of the range. Habitat heterogeneity plays a major role in shaping patterns of genetic differentiation in S. s. longirostris, with forests representing key areas for its long-term persistence under scenarios of environmental change. Our study stresses the importance of maintaining population genetic connectivity in low-dispersal organisms under rapidly changing environments, and will inform management plans for the long-term survival of this evolutionarily distinct Mediterranean endemic.  相似文献   

3.
The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.  相似文献   

4.
Seagrasses are marine angiosperms and play an essential ecological role in coastal ecosystems; however, seagrass meadows are threatened locally by anthropogenic disturbances. Understanding the dispersal patterns of seagrasses is essential for appropriate ecosystem management and establishment of marine protected areas (MPAs) in coastal ecosystems. In the Guimaras Strait in the Philippines, Banate (BAN) has been established as an MPA. However, there is a lack of information on the genetic diversity of seagrasses in BAN and the surrounding areas. In the present study, population genetics analysis of Enhalus acoroides was performed by using polymorphic microsatellite markers, for the estimation of genetic diversity, differentiation, and migration patterns of seagrasses within the regional geographical scale (~200 km) around the Guimaras Strait. The results showed that the genetic diversity of BAN is extremely low, although the Guimaras Strait is located in the tropical central habitat. Guimaras Island geographically divides the populations of E. acoroides into south and north. However, the genetic structure did not show any relationship between the geographical location and distance. The floating, buoyant fruits of E. acoroides may play a role in their long-distance dispersal; however, such dispersal is not frequent. Almost all of the seeds and fruits are derived from self-recruitment in the natal meadow. This study suggests that E. acoroides populations possess a weak genetic connectivity, and that the persistence of the meadow is threatened due to the low genetic diversity and high degree of population isolation in BAN. To maintain and enhance the genetic diversity of seagrasses within the MPA, the seagrass meadows in the surrounding areas should also be conserved.  相似文献   

5.
The ecology of a species strongly influences genetic variation and population structure. This interaction has important conservation implications because taxa with low dispersal capability and inability to use different habitats are more susceptible to anthropogenic stressors. Ocelots (Leopardus pardalis albescens) and bobcats (Lynx rufus texensis) are sympatric in Texas and northeastern Mexico; however, their ecology and conservation status are markedly different. We used 10 microsatellite loci and a 397-bp segment of the mitochondrial control region to examine how historical and ecological differences in these two species have influenced current patterns of genetic diversity in a landscape heavily altered by anthropogenic activities. Substantially higher genetic diversity (heterozygosity and haplotype diversity) and population connectivity was observed for bobcats in comparison to ocelots. The level of divergence among proximate ocelot populations (<30 km) was greater than between bobcat populations separated by >100 km. Ocelot populations in the US have never recovered from reductions experienced during the twentieth century, and their low genetic variation and substantial isolation are exacerbated by strong preference for dense native thornshrub and avoidance of open habitat. In contrast, despite continued legal harvesting and frequent road-related mortality, bobcats have maintained wide distribution, high abundance, and population connectivity. Our study illustrates that sympatric species with a similar niche can still have sufficient ecological differences to alter their response to anthropogenic change. Sensitive species, such as the ocelot, require additional conservation actions to sustain populations. Ecological differences among species occupying a similar guild are important to consider when developing conservation plans.  相似文献   

6.
The distribution of genetic diversity among natural populations is significantly shaped by geographical and environmental heterogeneity. The key objectives of this study were to outline the population genetic structure and to investigate the effects of historical and current factors in shaping the population structure of an endemic tropical tree, Hagenia abyssinica. We used 11 polymorphic microsatellites to estimate genetic variability and evaluate gene flow among natural populations of H. abyssinica. Further, we employed ecological niche modeling approaches, to analyze the demographic history and map potential distributions of H. abyssinica during the Last Glacial Maximum and the present. Significant levels of genetic diversity (H O = 0.477, H E = 0.439) were observed among the sampled locations. High coefficient of genetic differentiation (F ST = 0.32) and considerable genetic variation within the sampled locations (68.01%) were detected. Our results indicated the existence of three genetic groups with limited gene exchange and revealed positive correlations (r = 0.425, P < 0.05) between genetic diversity and geo-graphic distance. The ecological niche modeling (ENM) results support the existence of three distribution zones during the Last Glacial Maximum (LGM), with high probability of occurrence (0.8–1.0), and indicated slight distribution disturbances during and after the LGM. The fundamental patterns of genetic diversity and population structuring of H. abyssinica result from a combination of both environmental and geographical factors, including long-term isolation by distance and characteristic life history of this species. Our ENM results identified three zones that could have served as glacial refugia for this species and lay a foundation for further studies, outlining demographic histories and population structures of Afromontane species.  相似文献   

7.
Despite the potential for long-distance gene flow in the sea, there is growing evidence of cryptic genetic diversity in many marine taxa. Understanding the geographic distribution of cryptic lineages, as well as the spatial patterns of admixture among them, can have important implications for conservation planning. Here, we explore patterns of divergence in a coral reef fish, the neon goby Elacatinus lori, across the species’ range. First, we use targeted amplicon sequencing to describe the spatial pattern of genetic divergence using two marker types (57 anonymous ddRAD-derived loci and mtDNA cytb). Second, we quantify the degree of admixture and hybridization between two previously-unidentified divergent lineages within Belize. Third, we assess whether the existing group of marine protected areas (MPAs) in Belize protects this cryptic genetic diversity. The results provide strong evidence for two divergent genetic lineages of E. lori within Belize, separated geographically by only 30 km of low-suitability habitat. There is a sharp genetic cline across these 30 km, and evidence of admixture and introgression at the boundary regions of the habitat break. We also show that the broadly-distributed arrangement of MPAs within Belize protects both major lineages as well as subtle structure within-lineages, and therefore may confer protection to co-distributed species that exhibit similar spatial patterns of divergence.  相似文献   

8.
The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy–Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7–36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.  相似文献   

9.
Understanding genetic connectivity is fundamental for ecosystem-based management of marine resources. Here we investigate the metapopulation structure of the edible sea cucumber Holothuria edulis Lesson, 1830 across Okinawa Island, Japan. This species is of economic and ecological importance and is distributed from the Red Sea to Hawai‘i. We examined sequence variation in fragments of mitochondrial cytochrome oxidase subunit I (COI) and 16S ribosomal RNA (16S), and nuclear histone (H3) at six locations across Okinawa Island. We found higher haplotype diversity for mtDNA (COI: Hd = 0.69 and 16S: Hd = 0.67) and higher heterozygosity of nDNA (H3: H E = 0.39) in populations from the west coast of Okinawa compared to individuals from populations on the east coast (COI: Hd = 0.40; 16S: Hd = 0.21; H3: H E = 0.14). Overall population structure was significant (AMOVA results for COI: Φ ST = 0.49, P < 0.0001; 16S: Φ ST = 0.34, P < 0.0001; H3: Φ ST = 0.12, P < 0.0001). One population in the east, Uruma, showed elevated pairwise Φ ST values in comparisons with all other sites and a marked reduction of genetic diversity (COI: Hd = 0.25 and 16S: Hd = 0.24), possibly as a consequence of a shift to a more dominant asexual reproduction mode. Recent reports have indicated that coastal development in this area influences many marine organisms, and ecosystem degradation in this location could cause the observed decrease of genetic diversity and isolation of H. edulis in Uruma. Our study should provide valuable data to help with the urgently needed management of sea cucumber populations in Okinawa, and indicates particular attention needs to be paid to vulnerable locations.  相似文献   

10.
Historical events such as colonisation, spatial distribution across different habitats, and contemporary processes, such as human-mediated habitat fragmentation can leave lasting imprints on the population genetics of a species. Orchids currently comprise 17% of threatened flora species in Australia (Environment Protection and Biodiversity Conservation Act 1999) due to the combination of fragmentation and illegal harvesting (Benwell in Recovery plan, swamp orchids Phaius australis, Phaius tancarvilliae, NSW National Parks and Wildlife Service, Sydney, 1994; Jones in A complete guide to native orchids of Australia including the island territories, 2nd edn, Reed Natural History, Sydney, 2006; DE in Phaius australis in species profile and threats database, Department of the Environment. http://www.environment.gov.au/sprat, 2015). The federally endangered Swamp Orchid Phaius australis has a disjunct distribution across an almost 2000 km latitudinal range along Australia’s east coast but it was estimated that 95% of the populations have been lost since European settlement (Benwell 1994). Phaius australis is endangered due to illegal collection and habitat loss that has resulted in limited connectivity between populations, in ecosystems that are vulnerable to climate change. Thus the genetic impacts of its history combined with more recent fragmentation may have impacts on its future viability especially in light of changing environmental conditions. Thirty-four populations were sampled from tropical north Queensland to the southern edge of the subtropics in New South Wales. Population genetics analysis was conducted using 13 polymorphic microsatellite markers developed for the species using NextGen sequencing. Spatial genetic patterns indicate post-colonisation divergence from the tropics southwards to its current climate niche limits. Genetic diversity is low across all populations (A?=?1.5, H e  = 0.171), and there is little evidence of genetic differentiation between regions. Consistent with population genetic theory, the historic loss of populations has resulted in significantly lower genetic diversity in small populations compared to large (P, A, He; p?<?0.05). The viability and persistence of P. australis populations now and in a changing climate are discussed in the context of conservation priorities.  相似文献   

11.
12.
Redside dace Clinostomus elongatus (Teleostei: Cyprinidae) is a species of conservation concern that is declining throughout its range as a result of habitat fragmentation, degradation and loss. We characterized the genetic structure and diversity of redside dace populations across the species range using mitochondrial and microsatellite data to inform conservation efforts and assess how historical and recent events have shaped genetic structure and diversity within and among populations. Phylogeographic structure among 28 redside dace populations throughout southern Ontario (Canada) and the United States was assessed by sequence analysis of the mitochondrial cytochrome b and ATPase 6 and 8 genes. Populations were also genotyped using ten microsatellite loci to examine genetic diversity within and among populations as well as contemporary spatial structuring. Mitochondrial DNA sequence data revealed three geographically distinct lineages, which were highly concordant with groupings identified by microsatellite analysis. The combined genetic data refute published glacial refugia hypotheses of a single Mississippian refugium or of two lineages associated with Mississippian and Atlantic refugia. Secondary contact between the two eastern groups was documented in the Allegheny River drainage and tributaries to Lake Ontario. With the exception of several allopatric populations within the Allegheny watershed, high genetic structuring among populations suggests their isolation, indicating that recovery efforts should be population-based.  相似文献   

13.
Belonging to the genus Dendrobium of Orchidaceae, Dendrobium moniliforme is an endangered species with disjunct distribution in East Asia, possessing significant medicinal value. To investigate its phylogeography, this study compared sequences of two mitochondrial DNA (mtDNA) fragments (nad 1/b-c and nad 7/2-3) from 143 samples of 18 natural populations of D. moniliforme almost covering the entire range of the Sino-Japanese Floristic Region (SJFR) of East Asia. As a result, a total of 30 mtDNA haplotypes were identified in these populations which revealed high levels of haplotype diversity (H d  = 0.8733) and total genetic diversity (H T  = 0.8886). Additionally, G ST value being significantly lower (0.451) than N ST value (0.722) (P < 0.05) indicated the presence of strong phylogeographic structure in these populations, and the network of mtDNA haplotypes showed that all haplotypes were divided into two clades (A and B). Haplotype overlap was observed among several D. moniliforme population groups in mainland China, suggesting the occurrence of ongoing and/or historical gene flow among them. No common haplotypes were shared by D. moniliforme populations from mainland China and the CKJ Islands (representing Taiwan [China], South Korea, and Japan collectively), pointing to their allopatric evolution in the two regions. Moreover, mismatch distribution analysis and neutral test of mtDNA data rejected the population expansion model. According to the mtDNA-based results, we infer that multiple refugia for D. moniliforme existed in the SJFR of East Asia during the Quaternary glacial period.  相似文献   

14.
15.
Knowledge of larval dispersal and connectivity in coral reef species is crucial for understanding population dynamics, resilience, and evolution of species. Here, we use ten microsatellites and one mitochondrial marker (cytochrome b) to investigate the genetic population structure, genetic diversity, and historical demography of the powder-blue tang Acanthurus leucosternon across more than 1000 km of the scarcely studied Eastern African region. The global AMOVA results based on microsatellites reveal a low but significant F ST value (F ST = 0.00252 P < 0.001; D EST = 0.025 P = 0.0018) for the 336 specimens sampled at ten sample sites, while no significant differentiation could be found in the mitochondrial cytochrome b dataset. On the other hand, pairwise F ST, PCOA, and hierarchical analysis failed to identify any genetic breaks among the Eastern African populations, supporting the hypothesis of genetic homogeneity. The observed genetic homogeneity among Eastern African sample sites can be explained by the lengthy post-larval stage of A. leucosternon, which can potentiate long-distance dispersal. Tests of neutrality and mismatch distribution signal a population expansion during the mid-Pleistocene period.  相似文献   

16.
Many peninsulas in the temperate zone played an important role as refugia of various flora and fauna, and the southern Korean Peninsula also served as a refugium for many small mammals in East Asia during the Pleistocene. The Asian lesser white-toothed shrew, Crocidura shantungensis, is a widely distributed species in East Asia, and is an appropriate model organism for exploring the role of the Korean Peninsula as a refugium of small mammals. Here, we investigated phylogenetic relationships and genetic diversity based on the entire sequence of the mitochondrial cytochrome b gene (1140 bp). A Bayesian tree for 98 haplotypes detected in 228 C. shantungensis specimens from East Asia revealed the presence of three major groups with at least 5 subgroups. Most haplotypes were distributed according to their geographic proximity. Pairwise FST’s and analysis of molecular variance (AMOVA) revealed a high degree of genetic differentiation and variance among regions as well as among populations within region, implying little gene flow among local populations. Genetic evidence from South Korean islands, Jeju-do Island of South Korea, and Taiwan leads us to reject the hypothesis of recent population expansion. We observed unique island-type genetic characteristics consistent with geographic isolation and resultant genetic drift. Phylogeographic inference, together with estimates of genetic differentiation and diversity, suggest that the southern most part the Korean Peninsula, including offshore islands, played an important role as a refugium for C. shantungensis during the Pleistocene. However, the presence of several refugia on the mainland of northeast Asia is also proposed.  相似文献   

17.
The aim of this study was to investigate whether Pleistocene climatic instability influenced the phylogeographic structure and historical demography of an endemic Atlantic Forest (AF) orchid bee, Euglossa iopoecila Dressler, which shows two main patterns of integument colors over of its geographical distribution. We based our analysis on the concatenated sequence of four mtDNA segments belonging to genes 16S (357 bp), Cytb (651 bp) and COI (1206 bp), totaling 2234 bp. Samples of E. iopoecila populations were collected in 14 AF remnants along its geographic distribution. Median-Joining haplotype networks, SAMOVA and BAPS results indicated three lineages (southern, central and northern clusters) for E. iopoecila, with two important phylogeographic ruptures. We found higher genetic diversity among samples collected in the central region of the AF, which coincides with predicted areas of climatic stability, according to recent AF stability–extinction model. The demographic analysis suggests that only the southern cluster had undergone recent population expansion, which probably started after the last glacial maximum (LGM). Our data suggest that the differentiation observed in the three mitochondrial lineages of E. iopoecila is the result of past disconnections and multiple extinction/recolonization events involving climate fluctuations. In terms of conservation, we would emphasize the importance of considering: (1) the region of the central clade as the location of the highest genetic diversity of mtDNA of E. iopoecila populations; (2) the philopatric behavior of females that tends to restrict mtDNA gene flow in particular, with direct implications for the conservation of the total genetic diversity in euglossine populations.  相似文献   

18.
In order to improve our understanding of habitat preferences and optimal management of open woodland insects, we analyse patch occupancy and oviposition electivity of the endangered Duke of Burgundy butterfly, Hamearis lucina, in three regions across German habitat types. Some newly available forest clearings created by a severe winter storm in the Schönbuch region were colonised within 2 years, whereas some suitable patches remained unoccupied for several years. We discuss how small population sizes, limited patch connectivity, and habitat quality may contribute to such an intermediate colonisation power. Across study regions, we document differences in oviposition site electivity. On calcareous grassland in the Diemeltal, shaded Primula plants on western slopes were preferentially used, probably to avoid desiccation of the natal food plant. To the contrary, sun-exposed Primula stands were preferred in forest clearings in the Schönbuch and calcareous fens in the Allgäu. In these regions, the risk of desiccation is low, but the overall cool and moist microclimate conditions may hamper larval development in shaded conditions, favouring oviposition at sites with maximum exposition to solar radiation. Optimal management strategies depend on the abiotic and biotic conditions and conservation priorities for the given region and habitat type, and we suggest management regimes that promise to sustain suitable H. lucina habitat at a landscape-level.  相似文献   

19.
The endemic Samango monkey subspecies (Cercopithecus albogularis labiatus) inhabits small discontinuous Afromontane forest patches in the Eastern Cape, KwaZulu-Natal midlands and southern Mpumalanga Provinces in South Africa. The subspecies is affected by restricted migration between forest patches which may impact on gene flow resulting in inbreeding and possible localized extinction. Current consensus, based on habitat quality, is that C. a. labiatus can be considered as endangered as the small forest patches they inhabit may not be large enough to sustain them. The aim of this study was to conduct a molecular genetic investigation to determine if the observed isolation has affected the genetic variability of the subspecies. A total of 65 Samango monkeys (including juveniles, subadults and adults) were sampled from two localities within the Hogsback area in the Amathole Mountains. Nuclear and mitochondrial DNA variation was assessed using 17 microsatellite markers and by sequencing the hypervariable 1 region (HVR1). Microsatellite data generated was used to determine population structure, genetic diversity and the extent of inbreeding. Sequences of the HVR1 were used to infer individual origins, haplotype sharing and haplotype diversity. No negative genetic factors associated with isolation such as inbreeding were detected in the two groups and gene flow between groups can be regarded as fairly high primarily as a result of male migration. This was in contrast to the low nuclear genetic diversity observed (H o = 0.45). A further reduction in heterozygosity may lead to inbreeding and reduced offspring fitness. Translocations and establishment of habitat corridors between forest patches are some of the recommendations that have emerged from this study which will increase long-term population viability of the subspecies.  相似文献   

20.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号