共查询到20条相似文献,搜索用时 0 毫秒
1.
《Fungal Biology Reviews》2008,22(1):17-25
Chytrids are very important components of freshwater ecosystems, but the ecological significance of this group of fungi is not well understood. This review considers some of the significant environmental factors affecting growth and population composition of chytrids in aquatic habitats. The physical factors include primarily salinity, dissolved oxygen concentration and temperature. The biological factors include the role of chytrids as saprobes and parasites and methods of dispersal of propagules throughout the ecosystem. Dispersal depends upon both zoospores for short range and whole thalli for long range dispersal. Five roles for chytrids in food-web dynamics are proposed: (1) chytrid zoospores are a good food source for zooplankton, (2) chytrids decompose particulate organic matter, (3) chytrids are parasites of aquatic plants, (4) chytrids are parasites of aquatic animals and (5) chytrids convert inorganic compounds into organic compounds. New molecular methods for analysis of chytrid diversity in aquatic environments have the potential to provide accurate quantitative data necessary for better understanding of ecological processes in aquatic ecosystems. 相似文献
2.
The diversity–stability hypothesis in ecology asserts that biodiversity begets stability of ecological systems. This hypothesis has been supported by field studies on primary producers in grasslands, in which the interaction between species is mostly competition. As to ecosystems with multitrophic predatory interaction, however, no definite consensus has been arrived at for the relation between trophic diversity and ecosystem stability. The stability index suitable to ecosystems with predatory interaction is given by MacArthurs idea of stability and its formulation by Rutledge et al. More suitable indices of stability (relative conditional entropy) are proposed in this study for the comparison of different ecosystems, and the validity of the diversity–stability hypothesis for food webs (networks of predation) with many trophic compartments in natural aquatic ecosystems is examined. Results reveal that an increase in the biomass diversity of trophic compartments causes an increase in the whole systemic stability of food webs in aquatic ecosystems. Hence, evidence of the whole systemic validity of the diversity–stability hypothesis for natural aquatic ecosystems with ubiquitous multitrophic predatory interaction was obtained for the first time. 相似文献
3.
Tropical macrophytes sold in the live garden trade are perceived as unlikely to invade temperate regions owing to climate mismatches. Here we study two tropical macrophytes (Pistia stratiotes and Eichhornia crassipes) not previously considered an invasion risk but which were recently discovered in the Great Lakes, and determine mechanisms that may be responsible for their continued presence including human introduction, reproduction through viable seeds and tolerance of winter conditions. Surveys conducted in 2011 and 2012 revealed recurrent presence of one or both species at some sites. Macrophytes in in situ enclosures failed to survive winter conditions, with plant health declining progressively prior to mortality. Water hyacinth seeds were field-collected, identified using Sanger sequencing, and germinated at 28°C with or without scarification. Germination was highest for scarified versus non-scarified seeds. Human introduction was observed at two sites, one involving both species, the other only water hyacinth. These species likely persist through a combination of annual reintroduction (both species) and possibly by production of viable seed (water hyacinth). Macrophytes, particularly water hyacinth, that were not previously viewed as a threat to the Great Lakes owing to environmental incompatibility may need to be reassessed. 相似文献
4.
Effects of partitioning allochthonous and autochthonous resources on food web stability 总被引:1,自引:0,他引:1
The flux of energetic and nutrient resources across habitat boundaries can exert major impacts on the dynamics of the recipient food web. Competition for these resources can be a key factor structuring many ecological communities. Competition theory suggests that competing species should exhibit some partitioning to minimize competitive interactions. Species should partition both in situ (autochthonous) resources and (allochthonous) resources that enter the food web from outside sources. Allochthonous resources are important sources of energy and nutrients in many low productivity systems and can significantly influence community structure. The focus of this paper is on: (i) the influence of resource partitioning on food web stability, but concurrently we examine the compound effects of; (ii) the trophic level(s) that has access to allochthonous resources; (iii) the amount of allochthonous resource input; and (iv) the strength of the consumer–resource interactions. We start with a three trophic level food chain model (resource–consumer–predator) and separate the higher two trophic levels into two trophospecies. In the model, allochthonous resources are either one type available to both consumers and predators or two distinct types, one for consumers and one for predators. The feeding preferences of the consumer and predator trophospecies were varied so that they could either be generalists or specialists on allochthonous and/or autochthonous resources. The degree of specialization influenced system persistence by altering the structure and, therefore, the indirect effects of the food web. With regard to the trophic level(s) that has access to allochthonous resources, we found that a single allochthonous resource available to both consumers and predators is more unstable than two allochthonous resources. The results demonstrate that species populating food webs that experience low to moderate allochthonous resources are more persistent. The results also support the notion that strong links destabilize food web dynamics, but that weak to moderate strength links stabilize food web dynamics. These results are consistent with the idea that the particular structure, resource availability, and relative strength of links of food webs (such as degree of specialization) can influence the stability of communities. Given that allochthonous resources are important resources in many ecosystems, we argue that the influence of such resources on species and community persistence needs to be examined more thoroughly to provide a clearer understanding of food web dynamics. 相似文献
5.
Juha Mikola 《Oecologia》1998,117(3):396-403
Previous theoretical and empirical evidence suggests that species composition within trophic levels may profoundly affect the response of trophic-level biomasses to enhanced basal resources. To test whether species composition of microbivorous nematodes has such an effect in microbial-based soil food webs, I created three microcosm food webs, consisting of bacteria, fungi, bacterial-feeding nematodes (Acrobeloides tricornus, Caenorhabditis elegans), fungal-feeding nematodes (Aphelenchus avenae, Aphelenchoides sp.) and a predatory nematode (Prionchulus punctatus). The food webs differed in species composition at the second trophic level: food web A included A. tricornus and Aph. avenae, food web B included C. elegans and Aphelenchoides sp., and food web AB included all four species. I increased basal resources by adding glucose to half of the replicates of each food web, and sampled microcosms destructively four times during a 22-week experiment to estimate the biomass of organisms at each trophic level. Microbivore species composition significantly affected bacterivore and fungivore biomass but not bacterial, fungal or predator biomass. Greatest bacterivore and fungivore biomass was found in food web A, intermediate biomass in food web AB, and smallest biomass in food web B. Basal resource addition increased the biomass of microbes and microbivores but did not affect predator biomass. Importantly, microbivore species composition did not significantly modify the effect of additional resources on trophic-level biomasses. The presence of a competitor reduced the biomass of A. tricornus and Aph. avenae, in that the biomass of these species was less in food web AB than in food web A, whereas the biomass of C. elegans and Aphelenchoides sp. was not affected by their potential competitors. The biomass of Aph. avenae increased with additional resources in the absence of the competitor only, while the biomass of A. tricornus and Aphelenchoides sp. increased also in the presence of their competitors. The results imply that microbivore species composition may determine the second-level biomass in simple microbe-nematode food webs, but may not significantly affect biomass at other levels or modify the response of trophic-level biomasses to enhanced basal resources. The study also shows that even if the role of predation in a food web is diminished, the positive response of organisms to increased resource availability may still be hindered by competition. Received: 22 June 1998 / Accepted: 28 August 1998 相似文献
6.
Biodiversity and the productivity and stability of ecosystems 总被引:2,自引:0,他引:2
Attempts to unveil the relationships between the taxonomic diversity, productivity and stability of ecosystems continue to generate inconclusive, contradictory and controversial conclusions. New insights from recent studies support the hypothesis that species diversity enhances productivity and stability in some ecosystems, but not in others. Appreciation is growing for the ways that particular ecosystem features, such as environmental variability and nutrient stress, can influence biotic interactions. Alternatives to the diversity-stability hypothesis have been proposed, and experimental approaches are starting to evolve to test these hypotheses and to elucidate the mechanisms underlying the functional role of species diversity. 相似文献
7.
Given the unprecedented rate of species extinctions facing the planet, understanding the causes and consequences of species diversity in ecosystems is of paramount importance. Ecologists have investigated both the influence of environmental variables on species diversity and the influence of species diversity on ecosystem function and stability. These investigations have largely been carried out without taking into account the overarching stabilizing structures of food webs that arise from evolutionary and successional processes and that are maintained through species interactions. Here, we argue that the same large-scale structures that have been purported to convey stability to food webs can also help to understand both the distribution of species diversity in nature and the relationship between species diversity and food web stability. Specifically, the allocation of species diversity to slow energy channels within food webs results in the skewed distribution of interactions strengths that has been shown to confer stability to complex food webs. We end by discussing the processes that might generate and maintain the structured, stable and diverse food webs observed in nature. 相似文献
8.
Tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N-dimethylurea) appears to control the riparian shrub saltcedar (Tamarix spp.); however, its use is restricted since the fate and effects of this herbicide in aquatic systems are unknown. Possible tebuthiuron impacts on aquatic production were examined in ten 2846-1 three-phase, open-system mesocosms. Each mesocosm contained sediment, water, algae, micro- and macroinvertebrates and fish, and was open to the atmosphere for gas exchange and colonization by indigenous macroinvertebrates and algae. The following nominal doses of tebuthiuron were used: 0 (control), 10, 70, 200, 500, and 1000 g 1–1. The 200 g 1–1 dose approximated the highest concentration of tebuthiuron detected in a water body after experimental application to a watershed. Data generated from all treatment levels were used in tebuthiuron fate analysis and in correlation analysis between the mesocosm variables. The control and the 200 g 1–1 treatment level were replicated (n = 3) to allow for additional statistical analyses of treatment effects at the 200 g 1–1 level. The adsorption of tebuthiuron to sediments contained in ten mesocosms was described by the Freundlich equation, x/m = 3.24c0.68. Phytoplankton primary production, chironomid density, and chironomid biomass were negatively correlated with tebuthiuron concentration during peak system productivity. Conversely, no trends were observed at any sample date between an omnivorous fish species and herbicide concentration. At the 200 g 1–1 dose level, only chironomid density was reduced. Factors responsible for reductions in chironomid density may include 1) a species shift in the 200 g 1–1 treatment algal assemblages toward a greater percentage of unpalatable biomass, and 2) decreased algal productivity and/or an algal species shift in mesocosms receiving dose levels greater than 200 g 1–1. Chironomid density reduction at the 200 g 1–1 dose level suggests that deleterious effects may occur in some stream systems exposed to a 200 g 1–1 tebuthiuron concentration.Contribution No. T-9-367 of the College of Agricultural Sciences, Texas Tech University.Contribution No. T-9-367 of the College of Agricultural Sciences, Texas Tech University. 相似文献
9.
Jaroslav Vrba Jiří Kopáček Thomas Bittl Jiří Nedoma Alena Štrojsová Linda Nedbalová Leoš Kohout Jan Fott 《Biologia》2006,61(20):S441-S451
We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: ?ertovo jezero (CT), Prá?ilské jezero (PR), and Ple?né jezero (PL) in the Bohemian Forest (?umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L?1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L?1) was about five times higher than in CT and PR (3.9 and 5.1 µg L?1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L?1) was, however, only ~2-times higher than in CT and PR (235 and 272 µg C L?1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L?1 h?1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH < 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress. 相似文献
10.
Biodiversity, productivity and stability in real food webs 总被引:3,自引:0,他引:3
The global biodiversity crisis has motivated new theory and experiments that explore relationships between biodiversity (species richness and composition in particular), productivity and stability. Here we emphasize that these relationships are often bi-directional, such that changes in biodiversity can be both a cause and a consequence of changes in productivity and stability. We hypothesize that this bi-directionality creates feedback loops, as well as indirect effects, that influence the complex responses of communities to biodiversity losses. Important, but often neglected, mediators of this complexity are trophic interactions. Recent work shows that consumers can modify, dampen or even reverse the directionality of biodiversity-productivity-stability linkages inferred from the plant level alone. Such consumer mediation is likely to be common in many ecosystems. We suggest that merging biodiversity research and food-web theory is an exciting and pressing frontier for ecology, with implications for biodiversity conservation. 相似文献
11.
This work purports to analyze the influence of allochthonous nutrient input into consumer level in the ultimate dynamics of an omnivory food web, where consumption is dictated by non-switching and switching predators. Within this behavioral context, prey consumption structure is shown to have a markedly effect on food web dynamics under a gradient of allochthonous input and primary productivity. A striking feature is that in the non-switching model invasion of consumer and predator occurs sequentially in this order as density of carrying capacity increases, while in the switching model both predators and consumers are able to invade and persist irrespective of the considered carrying capacity levels. 相似文献
12.
1. Trophic heterogeneity, or differences in edibility or resource consumption among species within a single trophic level, is widespread in natural food webs. Here, we test simple food web models that incorporate trophic heterogenity and that make robust predictions regarding food web responses to nutrient enrichment. To test these predictions, we assembled simple food webs consisting of an inedible alga, a mixed assemblage of bacteria, and a protist bacterivore in laboratory microcosms of contrasting nutrient concentrations. 2. Several results were consistent with model predictions. First, increasing nutrient concentration caused an increase in the abundance of the inedible alga, but only in the presence of the bacterivore. Secondly, nutrient enrichment increased the abundance of bacteria, but only in the absence of their bacterivore. Last, nutrient enrichment had no effect on abundance of the bacterivore. 3. Two results were not consistent with model predictions. First, at low nutrient concentrations, the presence of the bacterivore increased the abundance of bacteria. Secondly, although the abundances of the bacterivore and bacteria were positively correlated, some of the lowest abundances of both occurred in the high nutrient treatment. Thus, while our results were generally consistent with several simple food web models, additional explanations are required for selected food web responses. 相似文献
13.
This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here, we consider species assembly models where the population dynamics is kept far from fixed points through the continuous introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction. These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate trophic level, in agreement with field studies. 相似文献
14.
Jost C Lawrence CA Campolongo F van de Bund W Hill S DeAngelis DL 《Theoretical population biology》2004,66(1):37-51
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs-organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients-autotrophs-herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included. 相似文献
15.
Catherine A. Elstad 《Hydrobiologia》1986,137(3):223-237
An aquatic microcosm, consisting of three spatially separated yet mutually dependent trophic levels, was established in the laboratory and monitored for 310 days. A three-fold research approach evaluates the experimental potential of this large, multicompartmental microecosystem. Realistic biological and chemical features and nutrient fluxes parallel identifiable patterns observed in natural aquatic ecosystems as well as in published laboratory observations. Two successional patterns developed in the autotrophic community: a sequential change in species composition and a progression from a one-compartment planktonic situation to a two-phased planktonic-attached system. Although the microcosm was initially seeded with an axenic culture of Cryptomonas ovata var. palustris Ehr, contamination by Chlorella, Scenedesmus, Closterium, and Anabaena occurred within 41 days. The appearance of attached algae, noted on day 5, marked the transition from a planktonically-based ecosystem to a heterogeneous system. Crashes in the cladoceran population occurred on days 103 and 202. The second collapse was final. Repeated attempts to reestablish Daphnia middendorffiana failed. Mineralization and nutrient cycling are recognizable properties of the microcosm. Ammonification, nitrification, and nitrogen assimilation occurred predominantly in the decomposer tank as did the regeneration of inorganic phosphorus. A peak on day 205 in the ammonia input to the algal tank drawn from beneath the bacterial filter bed followed a peak in total Kjeldahl nitrogen (TKN) (day 135) and preceded peaks in nitrate (day 219) and TKN (day 233). Although levels in the algal tank were undetectable after three weeks, dissolved orthophosphate was actively regenerated in the decomposer bed, recycled to the autotroph unit, and rapidly assimilated by the algae. Characteristic patterns of radiotracer circulation also were evident. Sequential movement of 32P from the dissolved compartment to phytoplankton to attached algae was proposed. Conversely, 14C was steadily incorporated into the phytoplankton compartment; filtrate activities fluctuated. Tracer behaviors in the cladoceran compartment were superficially cyclic. Carbon turnover times in the algal and zooplankton compartments were 17 and 11.11 hours, respectively. Indicative of the greater biological mobility of phosphorus, respective turnover times of 2.50 and 2.44 hours were similarly calculated for phosphorus. Unlike dissolved carbon which had a turnover time of 625 hours, dissolved phosphorus was rapidly cycled into the algae (turnover time = 0.58 h). 相似文献
16.
Influence of decomposer food web structure and nitrogen availability on plant growth 总被引:7,自引:0,他引:7
We studied the sensitivity of soil microbial communities and ecosystem processes to variation in the vertical and horizontal
structure of decomposer food web under nitrogen poor and N-enriched conditions. Microcosms with humus and litter layer of
boreal forest floor, birch seedlings infected with mycorrhizal fungi, and decomposer food webs with differing trophic group
and species composition of soil fauna were constructed. During the second growing period for the birch, we irrigated half
of the microcosms with urea solution, and the other half with de-ionised water to create two levels of N concentration in
the substrate. During the experiment night time respirations of the microcosms were measured, and the water leached through
the microcosms was analysed for concentration of mineral N, and nematode numbers. The microcosms were destructively sampled
after 37 weeks for plant biomass and N uptake, structure of soil animal and microbial community (indicated by PLFA profiles),
and physical and chemical properties of the humus and litter materials. Predatory mites and nematodes had a negative influence
on the biomass of their microbivorous and microbi-detritivorous prey, and microbi-detritivores affected the biomass and community
structure of microbes (indicated by PLFA-analysis). Moreover, predatory mites and nematodes increased microbial biomass and
changed the microbial community structure. The decomposer food web structure affected also N uptake and growth of plants.
Microbi-detritivorous fauna had a positive effect, whereas predators of microbial and detritus feeding fauna exerted a negative
influence on plant N uptake and biomass production. The impact of a trophic group on the microbes and plant was also strongly
dependent on species composition within the group. Nitrogen addition magnified the influence of food web structure on microbial
biomass and plant N uptake. We suggest that addition of urea-N to the soil modified the animal-microbe interaction by increasing
microbial growth and altering community structure of microbes. The presence of microbi-detritivores and predators reduced
loss of carbon from the microcosms, and the food web structure influenced also water holding capacity of the materials. The
changes in plant growth, nutrient cycling, size of N and C pools, and in the physical properties of the soil emphasize the
importance and diversity of indirect consequences of decomposer food web structure.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
17.
Miguel Lurgi Bernat C. López José M. Montoya 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1605):3050-3057
The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community—in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space. 相似文献
18.
Woody species diversity influences productivity and soil nutrient availability in tropical plantations 总被引:2,自引:0,他引:2
We investigated the relationship between plant diversity and ecological function (production and nutrient cycling) in tropical
tree plantations. Old plantations (65–72 years) of four different species, namely Araucaria cunninghamii, Agathis robusta, Toona ciliata and Flindersia brayleyana, as well as natural secondary forest were examined at Wongabel State Forest, in the wet tropics region of Queensland, Australia.
Two young plantations (23 years) of Araucaria cunninghamii and Pinus caribaea were also examined. The close proximity of the older plantations and natural forests meant they had similar edaphic and climatic
conditions. All plantations had been established as monocultures, but had been colonised by a range of native woody plants
from the nearby rainforest. The extent to which this had occurred varied with the identity of the plantation species (from
2 to 17 species in 0.1 ha blocks). In many cases these additional species had grown up and joined the forest canopy. This
study is one of the few to find a negative relationship between overstorey plant diversity and productivity. The conversion
of natural forest with highly productive, low-diversity gymnosperm-dominated plantations (young and old Araucaria cunninghamii and Pinus caribaea) was found to be associated with lower soil nutrient availability (approximately five times less phosphorus and 2.5 times
less nitrogen) and lower soil pH (mean = 6.28) compared to the other, less productive plantations. The dominant effects of
two species, Araucaria cunninghamii and Hodgkinsonia frutescens, indicate that ecosystem functions such as production and nutrient availability are not determined solely by the number of
species, but are more likely to be determined by the characteristics of the species present. This suggests that monoculture
plantations can be used to successfully restore some functions (e.g. nutrient cycling and production), but that the level
to which such functions can be restored will depend upon the species chosen and site conditions.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.
Corno G 《FEMS microbiology ecology》2006,58(3):354-363
Predation and competition are two main factors that determine the size and composition of aquatic bacterial populations. Using a simplified bacterial community, composed of three strains characterized by different responses to predation, a short-term laboratory experiment was performed to evaluate adaptations and relative success in communities with experimentally controlled levels of predation and nutrient availability. A strain with a short generation time (Pseudomonas putida), one with high plasticity in cell morphology (Flectobacillus sp. GC5), and one that develops microcolonies (Pseudomonas sp. CM10), were selected. The voracious flagellate Ochromonas sp. was chosen as a predator. To describe adaptations against grazing and starvation, abundance, biomass and relative heterogeneity of bacteria were measured. On the whole, the strains in the predation-free cultures exhibited unicellular growth, and P. putida represented the largest group. The presence of Ochromonas strongly reduced bacterial abundance, but not always the total biomass. The activity of grazers changed the morphological composition of the bacterial communities. Under grazing pressure the relative composition of the community depended on the substrate availability. In the presence of predators, P. putida abundance declined in both high and low nutrient treatments, and Pseudomonas CM10 developed colonies. Flectobacillus was only numerically codominant in the nutrient-rich environments. 相似文献
20.
Samraat Pawar 《Journal of theoretical biology》2009,259(3):601-612
To understand the dynamics of natural species communities, a major challenge is to quantify the relationship between their assembly, stability, and underlying food web structure. To this end, two complementary aspects of food web structure can be related to community stability: sign structure, which refers to the distributions of trophic links irrespective of interaction strengths, and interaction strength structure, which refers to the distributions of interaction strengths with or without consideration of sign structure. In this paper, using data from a set of relatively well documented community food webs, I show that natural communities generally exhibit a sign structure that renders their stability sensitive to interaction strengths. Using a Lotka-Volterra type population dynamical model, I then show that in such communities, individual consumer species with high values of a measure of their total biomass acquisition rate, which I term “weighted generality”, tend to undermine community stability. Thus consumer species’ trophic modules (a species and all its resource links) should be “selected” through repeated immigrations and extinctions during assembly into configurations that increase the probability of stable coexistence within the constraints of the community's trophic sign structure. The presence of such constraints can be detected by the incidence and strength of certain non-random structural characteristics. These structural signatures of dynamical constraints are readily measurable, and can be used to gauge the importance of interaction-driven dynamical constraints on communities during and after assembly in natural communities. 相似文献