首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
A rapid, specific, and sensitive radioassay for measuring bile acid CoA:glycine/taurine: N-acyltransferase (EC 2.3.1) has been developed. In this assay, 3H-labeled amino acids (glycine or taurine) are conjugated with unlabeled bile acid CoA derivatives to form 3H-labeled bile acid amidates. Following incubation, the 3H-labeled bile acid amidate is separated from the unreacted amino acid by an n-butanol extraction method. The extraction procedure was developed by evaluating the effects of buffer concentration and pH on the recovery of radiolabeled bile acid amidate standards in the presence of human hepatic cytosol. Highest recovery (greater than 90%) of bile acid amidate standards occurred under acidic conditions (pH 2) in the presence of 1% (w/v) SDS. When the radioassay and accompanying n-butanol extraction procedure were utilized to study the amidation of glycine or taurine with cholic acid in human hepatic cytosol, a single peak of radioactivity corresponding with either authentic glycocholate or taurocholate was detected in the n-butanol phase by high-performance liquid chromatography. This assay for bile acid CoA:glycine/taurine: N-acyltransferase activity was linear with incubation time and protein concentration. This assay should be useful in the biochemical studies of this enzyme, as well as in the examination of bile acid amidation in clinical liver specimens.  相似文献   

2.
A bile acid disappearance test using an enzyme immunoassay for ursodeoxycholic acid (UDCA) is presented. The immunoassay employs an antiserum produced in rabbits with UDCA coupled by amide linkage to egg albumin. An antigen (UDCA)-enzyme (beta-D-galactosidase) complex was prepared by adding the N-hydroxy-succinimide ester of UDCA to beta-D-galactosidase in a molar ratio of 5000:1. The anti-UDCA serum was coupled to glass beads and a competitive reaction between bile acids and UDCA coupled to the enzyme on the glass beads was measured by determining enzyme activity. One bead was used for each test tube. Thus it was convenient to wash and transfer the bead to a fresh test tube after incubation. The procedure requires 2.5 hr at 30 degrees C for the competitive reaction and enzyme assay. Using a 1:100 dilution of anti-serum, the intensity of fluorescence of 4-methylumbelliferone produced from 4-methylumbelliferyl-beta-D-galactoside by the enzyme decreased linearly with a logarithmic increase of UDCA concentration over a range of from 0.1 to 10 pmnd taurine conjugates, and good recovery data were obtained. The development of the enzyme immunoassay using glass beads shortens analysis time; furthermore, the method makes it possible to detect obstructive jaundice in rabbits before the serum bilirubin level is elevated.  相似文献   

3.
[Glycine-1-14C]hippuryl-l-histidyl-l-leucine was synthesized and evaluated as a substrate for the radiochemical assay of angiotensin converting enzyme. Hydrolysis is measured by quantitation of the liberated [glycine-1-14C]hippuric acid by liquid seintillation counting and is linear up to 30% hydrolysis. The advantages of the radiochemical assay over the spectrophotometric quantitation of the liberated hippuric acid are its increased sensitivity and lack of interference by nonionic detergents or lipids.  相似文献   

4.
Abstract: Cerebral taurine biosynthesis in a spontaneously hypertensive rat (SHR) has been studied. Cysteine sulfinic acid (CSA) and cysteic acid (CA), possible key intermediates in taurine biosynthesis, were found in the rat brain, whereas no cysteamine-cystamine was detected. In the brain of SHR, a statistically significant decrease in the contents of CSA, CA, and taurine was noted in the cerebellum, hypothalamus, and striatum as compared with normotensive Wistar Kyoto rats. Similarly, it was demonstrated that the activity of cysteine dioxygenase, the enzyme catalyzing cysteine to CSA, was attenuated significantly in the same brain areas of SHR. In contrast, no alteration in the activity of CSA decarboxylase, the enzyme converting CSA to hypotaurine or CA to taurine, was observed. A decline in the percent conversion of [14C]cysteine to [14C]taurine was found also in tissue homogenates from the cerebellum, hypothalamus, and striatum of SHR, indicating that the declines in taurine content may be due to an attenuation of taurine biosynthesis, possibly at the step involving cysteine dioxygenase.  相似文献   

5.
We describe a new assay for the chlorination activity of myeloperoxidase and detection of chloramines. Chloramines were detected by using iodide to catalyze the oxidation of either 3,3',5,5'-tetramethylbenzidine (TMB) or dihydrorhodamine to form strongly absorbing or fluorescent products, respectively. With TMB as little as 1 muM taurine chloramine could be detected. The sensitivity of the dihydrorhodamine assay was about 10-fold greater. The chlorination activity of myeloperoxidase was measured by trapping hypochlorous acid with taurine and subsequently using iodide to promote the oxidation reactions of the accumulated taurine chloramine. A similar approach was used to detect hypochlorous acid production by stimulated human neutrophils. Iodide-dependent catalysis distinguished N-chloramines from N-bromamines. This allows for discrimination between heme peroxidases that generate either hypochlorous acid or hypobromous acid. The assay has distinct advantages over existing assays for myeloperoxidase with regard to sensitivity, specificity, and its ease and versatility of use.  相似文献   

6.
The possibilities of interference by glycerophosphoryl ethanolamine (GPE) in the estimation of taurine levels in cerebral cortex, midbrain, cerebellum, medullapons, and spinal cord of developing human fetal brain regions were eliminated by hydrolyzing tissue extracts with 6 M HCl. Cysteic acid thus produced was separated from taurine by ion-exchange chromatography using Biorad-AG resin. Fluorescamine was used as fluorogen. Data reveal that the estimation of taurine in human fetal brain regions is affected if GPE is present as a contaminant in the assay system. Cysteic acid decarboxylase activity was measured using cysteic acid as the substrate. Higher enzymic activity was recorded with increased fetal body weight, but the reverse was true for taurine level.  相似文献   

7.
Hen egg white lysozyme (HEL), an antibacterial enzyme, is a prototype protein for studying the physical and chemical events that underlie the formation of amyloid fibril aggregates. Here, we studied alterations in enzymatic activity and aggregation provoked by oxidation of HEL by hypochlorous acid (HOCl), hypobromous acid (HOBr), taurine chloramine (Tau-NHCl), taurine monobromamine (Tau-NHBr), and taurine dibromamine (Tau-NBr(2)). Addition of only 4-fold molar excess of Tau-NHBr or Tau-NBr(2) to HEL caused complete depletion of its intrinsic fluorescence, whereas HOCl and HOBr caused 40%-50% bleaching. Tau-NHCl was unable to oxidize lysozyme. The selective effect of bromamines on tryptophan residues had a direct effect on enzymatic activity; bromamines were about two-fold more effective as inhibitors of lysozyme than the acid precursors. The oxidation of HEL by HOCl and HOBr was more effective regarding the aggregation of the protein, which was evidenced by increased turbidity, Rayleigh scattering, and anisotropy. The aggregates presented spectroscopic properties that suggested the formation of amyloid fibrils, as measured by the thioflavin assay. In conclusion, the capacity of Tau-NHBr and Tau-NBr(2) as inhibitors of the bactericidal activity of HEL could represent a role in the exacerbation of pulmonary infection, since leukocytes are rich sources of both taurine and HOBr. Moreover, the oxidation of HEL by just a small excess of hypohalous acids, a condition that could be found in inflammatory sites, may represent a new pathway for initiation of aggregation.  相似文献   

8.
Sulfoacetaldehyde sulfo-lyase, which decomposes sulfoacetaldehyde to sulfite and acetate, was extracted from a bacterium grown on taurine, and purified, and characterized. A method for assay of enzyme activity was devised on formation of a bisulfite adduct with benzaldehyde. The enzyme was purified 14-fold from an extract of cells grown on taurine and appeared homogeneous on disc-electrophoresis. The molecular weight of the enzyme was estimated to be 85,000 by gel filtration. The enzyme required thiamine pyrophosphate (TPP) and Mg2+ for activity and preincubation with TPP and Mg2+ was required for maximum activity. The optimum pH for activity was 7.5. The Km value for TPP was determined to be 2.7 muM and that for sulfoacetaldehyde to be 5.0mM. Sulfite was produced only from sulfoacetaldehyde among a variety of sulfonates tested. rho-Chloromercuribenzoate, EDTA, and sulfite, a reaction product, inhibited the enzyme reaction. The enzyme seemed to be inducible, since activity was found in extracts of cells grown on taurine but not on peptone.  相似文献   

9.
Immobilized DNA hairpins are exploited in a novel approach to assay DNA ligases and nucleases. A fundamental characteristic of the assay is that a fluorophore at the remote terminus of the hairpin reports on the integrity of the DNA backbone. The functionality of the protocol is confirmed using ATP- and NAD+-dependent DNA ligases and the nicking enzyme N.BbvCIA. The assay format is amenable to high-throughput analysis and quantitation of enzyme activity, and it is shown to be in excellent agreement with the more laborious electrophoretic approaches that are widely used for such analyses. Significantly, the assay is used to demonstrate sequential breaking and rejoining of a specific nucleic acid. Thus, a simple platform for biochemically innovative studies of pathways in cellular nucleic acid metabolism is demonstrated.  相似文献   

10.
There is evidence that increased availability of taurine enhances the proportion of taurine-conjugated bile acids in bile. To explore the possibility that taurine treatment could also influence hepatic cholesterol and bile acid metabolism, we fed female hamsters for 1 week and measured both the biliary lipid content and the microsomal level of the rate-limiting enzymes of cholesterol and bile acid synthesis. In these animals the cholesterol 7 alpha-hydroxylase activity was significantly greater in respect to controls (P less than 0.05). The total HMG-CoA reductase activity, as well as that of the active form, was similarly increased. The stimulation of 7 alpha-hydroxycholesterol synthesis was associated with an expansion of the bile acid pool size in taurine-fed animals. Taurine feeding was observed to induce an increase in bile flow as well as in the rate of excretion of bile acids, whereas the secretion rate of cholesterol in bile was decreased. As a consequence, the saturation index was significantly lower in taurine-fed animals (P less than 0.05). The possible mechanisms through which taurine exhibits the modification of the enzyme activities and of the biliary lipid composition are discussed.  相似文献   

11.
An ultraviolet absorbance method for quantitation of acetylsalicylic acid esterase (hydrolase) activity has been developed and validated. The sensitivity of the method was found to be 2.8 nmol/ml-min in the assay cuvette. Linearity of the reaction with enzyme concentration and time has been demonstrated. The product of the enzymatic reaction, salicylic acid, has been identified by thin-layer chromatography using acetyl-[14C]salicylic acid. The quantities of salicylic acid produced in 5, 10, and 15 min of incubation were equal when assayed by the spectrophotometric method and by the acetyl-[14C]salicylic acid thin-layer chromatographic method. The time required for assay by ultraviolet absorbance is approximately 3 min/sample.  相似文献   

12.
An early enzyme in menaquinone (vitamin K2) biosynthesis is the synthase forming 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) from isochorismic acid. In turn, SHCHC is aromatized to o-succinylbenzoic acid (OSB) by OSB synthase. An assay for the combined activity of these two enzymes ("overall OSB synthesis") has been developed using a high-performance liquid chromatographic method for the quantitation of OSB. The assay, which measures as little as 0.1 nmol of OSB, is vastly superior to the radiogas chromatographic method previously used to estimate overall OSB synthesis. To measure SHCHC synthase activity separately, the enzymatically formed SHCHC is converted nonenzymatically to OSB (heating to 80 degrees C, pH 10, 10 min), which is then quantitated by the HPLC assay. The preparation of the substrate, isochorismic acid, and its purification by preparative HPLC are also described.  相似文献   

13.
Alanine dehydrogenase [L-alanine:NAD+ oxidoreductase (deaminating), EC 1.4.1.4.] catalyses the reversible oxidative deamination of L-alanine to pyruvate and, in the anaerobic bacterium Bilophila wadsworthia RZATAU, it is involved in the degradation of taurine (2-aminoethanesulfonate). The enzyme regenerates the amino-group acceptor pyruvate, which is consumed during the transamination of taurine and liberates ammonia, which is one of the degradation end products. Alanine dehydrogenase seems to be induced during growth with taurine. The enzyme was purified about 24-fold to apparent homogeneity in a three-step purification. SDS-PAGE revealed a single protein band with a molecular mass of 42 kDa. The apparent molecular mass of the native enzyme was 273 kDa, as determined by gel filtration chromatography, suggesting a homo-hexameric structure. The N-terminal amino acid sequence was determined. The pH optimum was pH 9.0 for reductive amination of pyruvate and pH 9.0-11.5 for oxidative deamination of alanine. The apparent Km values for alanine, NAD+, pyruvate, ammonia and NADH were 1.6, 0.15, 1.1, 31 and 0.04 mM, respectively. The alanine dehydrogenase gene was sequenced. The deduced amino acid sequence corresponded to a size of 39.9 kDa and was very similar to that of the alanine dehydrogenase from Bacillus subtilis.  相似文献   

14.
Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.  相似文献   

15.
Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.  相似文献   

16.
Cysteine sulfinate decarboxylase (CSD), the putative biosynthetic enzyme for taurine, has been shown to exist in two forms in rat brain, respectively CSDI and CSDII, one of which (CSDII) is considered to be in fact glutamate decarboxylase (GAD). CSDI assay after immunotrapping was made possible by using an anti-CSD antiserum raised in sheep immunized with a partially purified CSD fraction from liver. This antiserum immunoprecipitated both liver CSD and brain CSDI activities with the same affinity but did not inhibit their enzymatic activities. The immunotrapping of CSDI was selective without any contamination by GAD/CSDII activity. The immunotrapped CSD activity, which corresponded exactly to the amount of CSD not precipitated by a GAD/CSDII antiserum, was not inhibited by a specific irreversible GAD inhibitor. A quantitative, selective and sensitive assay was thus developed by measuring CSD activity on the solid phase after immunotrapping. Kinetic parameters of the immunotrapped enzyme remained unchanged. CSDI activity represented only a fraction, around 20% with saturating concentration of substrate, of the total CSD activity in rat brain homogenate. This indicates that most studies on total CSD activity dealt essentially with CSDII activity that is indeed GAD. Regional and subcellular distributions of CSDI have been determined. CSDI activity was about threefold higher in the richest (cerebellum) compared to the poorest (striatum) region without any correlation with GAD/CSDII distribution. Subcellular distribution showed a fourfold enrichment of CSDI activity in the synaptosomal fraction. The precise role of CSDI and CSDII in the biosynthesis of taurine in vivo remains to be elucidated.  相似文献   

17.
A new, homogeneous, high-throughput-compatible assay method is described for the fluorescence-based quantitation of nanomolar concentrations of ribonucleoside diphosphates (rNDPs). The principle of the method is the conversion of the rNDPs to RNA by the enzyme polynucleotide phosphorylase (EC 2.7.7.8) and detection of the RNA by the increased fluorescence of a commercial nucleic acid detection dye. A commercial RNA homopolymer complementary to the RNA product is included to increase the sensitivity for ADP and UDP. Standard curves for nanomolar concentrations of ADP, UDP, GDP, and CDP are shown. The assay detected 75 nM ADP produced by the pyruvate kinase-catalyzed phosphorylation of pyruvate with a signal-to-baseline ratio of 2.8. The assay may be used in either a continuous or a discontinuous mode.  相似文献   

18.
Bile acid CoA:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids taurine and glycine. Rat liver BAT (rBAT) cDNA was isolated from a rat liver lambdaZAP cDNA library and expressed in Sf9 insect cells using a baculoviral vector. rBAT displayed 65% amino acid sequence homology with human BAT (hBAT) and 85% homology with mouse BAT (mBAT). Similar to hBAT, expressed rBAT was capable of forming both taurine and glycine conjugates with cholyl-CoA. mBAT, which is highly homologous to rBAT, forms only taurine conjugated bile acids (Falany, C. N., H. Fortinberry, E. H. Leiter, and S. Barnes. 1997. Cloning and expression of mouse liver bile acid CoA: Amino acid N-acyltransferase. J. Lipid Res. 38: 86-95). Immunoblot analysis of rat tissues detected rBAT only in rat liver cytosol following homogenization and ultracentrifugation. Subcellular localization of rBAT detected activity and immunoreactive protein in both cytosol and isolated peroxisomes. Rat bile acid CoA ligase (rBAL), the enzyme responsible for the formation of bile acid CoA esters, was detected only in rat liver microsomes. Treatment of rats with clofibrate, a known peroxisomal proliferator, significantly induced rBAT activity, message, and immunoreactive protein in rat liver. Peroxisomal membrane protein-70, a marker for peroxisomes, was also induced by clofibrate, whereas rBAL activity and protein amount were not affected. In summary, rBAT is capable of forming both taurine and glycine bile acid conjugates and the enzyme is localized primarily in peroxisomes in rat liver.  相似文献   

19.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

20.
《Insect Biochemistry》1988,18(5):493-497
Injection of adult cockroaches with 8 nmol taurine reduces serum trehalase activity. The maximal inhibition of serum trehalase activity caused by taurine is similar to the inhibition observed in vivo at 1 h following excitation. The serum of taurine-treated insects contains active and inactive forms of the enzyme with activation of the inactive form achieved by trypsinization and by increasing the ionic strength of the assay mixture for trehalase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号