首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luo P  Chen T  Zhao Y  Xu H  Huo K  Zhao M  Yang Y  Fei Z 《Free radical research》2012,46(6):766-776
Oxidative stress-induced cell damage is involved in many neurological diseases. Homer protein, as an important scaffold protein at postsynaptic density, regulates synaptic structure and function. Here, we reported that hydrogen peroxide (H(2)O(2)) induced the expression of Homer 1a. Down-regulation of Homer 1a with a specific small interfering RNA (siRNA) exacerbated H(2)O(2)-induced cell injury. Up-regulation of Homer 1a by lentivirus transfection did not affect the anti-oxidant activity, but significantly reduced the reactive oxygen species (ROS) production and lipid peroxidation after H(2)O(2)-induced oxidative stress. Overexpression of Homer 1a attenuated the loss of mitochondrial membrane potential (MMP) and ATP production induced by H(2)O(2), and subsequently inhibited mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio and caspase-9/caspase-3 activity. Furthermore, in the presence of BAPTA-AM, an intracellular free-calcium (Ca(2+)) chelator, overexpression of Homer 1a had no significant effects on H(2)O(2)-induced oxidative stress. These results suggest that Homer 1a has protective effects against H(2)O(2)-induced oxidative stress by reducing ROS accumulation and activation of mitochondrial apoptotic pathway, and these protective effects are dependent on the regulation of intracellular Ca(2+) homeostasis.  相似文献   

2.
《Free radical research》2013,47(6):766-776
Abstract

Oxidative stress-induced cell damage is involved in many neurological diseases. Homer protein, as an important scaffold protein at postsynaptic density, regulates synaptic structure and function. Here, we reported that hydrogen peroxide (H2O2) induced the expression of Homer 1a. Down-regulation of Homer 1a with a specific small interfering RNA (siRNA) exacerbated H2O2-induced cell injury. Up-regulation of Homer 1a by lentivirus transfection did not affect the anti-oxidant activity, but significantly reduced the reactive oxygen species (ROS) production and lipid peroxidation after H2O2-induced oxidative stress. Overexpression of Homer 1a attenuated the loss of mitochondrial membrane potential (MMP) and ATP production induced by H2O2, and subsequently inhibited mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio and caspase-9/caspase-3 activity. Furthermore, in the presence of BAPTA-AM, an intracellular free-calcium (Ca2 +) chelator, overexpression of Homer 1a had no significant effects on H2O2-induced oxidative stress. These results suggest that Homer 1a has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and activation of mitochondrial apoptotic pathway, and these protective effects are dependent on the regulation of intracellular Ca2 + homeostasis.  相似文献   

3.
The protective effect of whey protein hydrolysates (WPHs) against H2O2-induced oxidative damage on rat pheochromocytoma line 12 (PC12) cells was studied. Whey protein was hydrolyzed by pepsin and trypsin and purified by macrospore absorption resins. PC12 cells were pretreated with WPHs (from 369 to 1,980?Da) at different concentrations for 2?h, then washed and incubated with 100?μM H2O2 in the presence of WPHs for another 24?h. With 100–400?μg WPH/ml the viable cells increased by 20–30?% when incubated with H2O2 suggesting that they may play a role as antioxidant in foods.  相似文献   

4.
Recent data support the role of oxidative stress in the pathogenesis of Alzheimer disease (AD). In particular, glutathione (GSH) metabolism is altered and its levels are decreased in affected brain regions and peripheral cells from AD patients and in experimental models of AD. In the past decade, interest in the protective effects of various antioxidants aimed at increasing intracellular GSH content has been growing. Because much experimental evidence suggests a possible protective role of unsaturated fatty acids in age-related diseases, we designed the synthesis of new S-acylglutathione (acyl-SG) thioesters. S-Lauroylglutathione (lauroyl-SG) and S-palmitoleoylglutathione (palmitoleoyl-SG) were easily internalized into the cells and they significantly reduced Abeta42-induced oxidative stress in human neurotypic SH-SY5Y cells. In particular, acyl-SG thioesters can prevent the impairment of intracellular ROS scavengers, intracellular ROS accumulation, lipid peroxidation, and apoptotic pathway activation. Palmitoleoyl-SG seemed more effective in cellular protection against Abeta-induced oxidative damage than lauroyl-SG, suggesting a valuable role for the monounsaturated fatty acid. In this study, we demonstrate that acyl-SG derivatives completely avoid the sharp lipoperoxidation in primary fibroblasts from familial AD patients occurring after exposure to Abeta42 aggregates. Hence, we put forward these derivatives as new antioxidant compounds which could be excellent candidates for therapeutic treatment of AD and other oxidative stress-related diseases.  相似文献   

5.
Fucoidans are sulfated polysaccharides with proven pharmacological effects localized in the cell wall of marine brown algae. The majority of studies have been performed with temperate brown algal species, but in recent years, the evaluation of species from tropical areas has been growing. The aim of this study was to determine the protective effect of fucoidans extracted from the tropical brown seaweeds Dictyota ciliolata, Padina sanctae-crucis, and Sargassum fluitans, against oxidative stress (OS). The D. ciliolata fucoidan (FDc) exhibited the highest reactive oxygen species (ROS) scavenging activity (26%), followed by P. sanctae-crucis fucoidan (FPs) (22%) and S. fluitans fucoidan (FSf) (14%). No cytotoxic effect was detected for any of the extracted fucoidans at a concentration of 2 mg mL?1. Not only did the fucoidans tested show protective effect against OS by reducing ROS generation, but they also increased the glutathione (GSH) level and restored catalase (CAT) activity. Fucoidans obtained from tropical seaweeds could be used as a potential natural ingredient for functional foods.  相似文献   

6.
Abstract

Protease inhibitors are known to resist damage to host organisms against external threats, hence form a part of their defense system. This property of protease inhibitors was studied on protecting oxidatively stressed Saccharomyces cerevisiae yeast cells. The protease inhibitor was extracted from Agaricus bisporus, an edible mushroom. The inhibitor showed the presence of antioxidant activity as the purified inhibitor fraction gave an IC50 value of 45.13?±?0.88?µg/mL and 33.30?±?1.5?µg/mL when checked, respectively, by 2, 2-diphenyl-1-picrylhydrazyl, DPPH and 2, 2′-azo-bis(3-ethylbenzthiazoline-6- sulfonic acid), ABTS?+ scavenging activity. The yeast cells’ survival rate (%), was determined through 3-(4, 5-dimethylthiazol-2-yl) - 2, 5-diphenyltetrazolium bromide, MTT assay, and it was found that in the presence of 2?mM H2O2 cell survival decreased to 26.33%, whereas when the experiment was conducted in the presence of protease inhibitor and 2?mM H2O2 cell survival percentage rose to 74%. The protease inhibitor’s effect on the oxidatively stressed yeast cells was further studied by using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Confocal Microscopy to understand the morphological changes. The viable and non-viable cell populations were quantified using Fluorescence Assorted Cell Sorting (FACS) using propidium iodide, PI, 4′, 6-diamidino-2-phenylindole, DAPI and 2′, 7′-dichlorofluorescein, DCF dyes.  相似文献   

7.
We aimed to clarify whether grape seed polyphenols (GSPs) are candidates therapeutic agents against diabetes mellitus, and to determine what degree of GSP oligomerization has the most potent efficacy. We studied the protective effects of various molecular weight GSPs (monomer, oligomer, polymer, and oligonol) on high glucose-induced cytotoxicity. In the present study, a high concentration of glucose (30 mM) induced cytotoxicity and oxidative stress (reactive oxygen species and nitric oxide) in cultured LLC-PK1 cells, but treatment with GSPs, especially oligomer GSPs, had potent protective effects against high glucose-induced oxidative stress. In addition, high glucose induced nuclear translocation of nuclear factor-kappa B, and increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and bax, but GSP treatment inhibited them. These results indicate that GSPs have protective effects against high glucose-induced cytotoxicity, and among them, oligomer GSPs have more potent effects than other GSPs (monomer, polymer, and oligonol) on high glucose-induced renal cell damage.  相似文献   

8.
Protective effect of ascorbate against oxidative stress in the mouse lens   总被引:4,自引:0,他引:4  
The purpose of this study was to determine if high ascorbate of the human aqueous protects the lens against oxidative stress. Previous studies with the rat lens have been inconclusive because of its fortification with aldose reductase (AR), an important antioxidant. The human lens is deficient in this activity. These studies were hence done with the mouse lens, a species deficient in this enzyme. The reactive oxygen species (ROS)-induced physiological damage to the tissue was assessed in organ culture, by measuring its ability to actively transport 86Rb(+) ions, in the absence and presence of ascorbate. In addition, the status of tissue metabolism and its antioxidant reserve were assessed by quantitating ATP and glutathione (GSH). As expected, ROS decreased the membrane transport activity as well as the levels of ATP and GSH. Ascorbate minimized these toxic effects substantially. The presence of high ascorbate, therefore, appears highly beneficial in protecting the lens against oxidative damage and cataract formation, despite a deficiency of AR. The findings therefore appear to be significant from the point of view of using this nutrient for delaying the onset of cataract development in human beings, therapeutically as well as nutritionally.  相似文献   

9.
Both HIV infection per se and antiretroviral drugs might contribute to oxidative stress and mitochondrial dysfunctions. In this study we assess zidovudine, stavudine and didanosine on U937 and CEM cell lines. All these drugs induced apoptosis and increased intracellular hydrogen peroxide but not superoxide anions. The addition of acetyl-l-carnitine (ALC) was able to prevent the pro-oxidant effect of the drugs tested. Supplementation with ALC, deficient in certain cohorts of HIV-infected individuals, especially on high active antiretroviral therapy regimen, has been associated with favourable effects. These data suggest that one of these effects could be a direct anti-oxidant action.  相似文献   

10.
ABSTRACT

This study was undertaken to investigate the neuroprotective effect of an ethanolic extract of Mori Cortex radicis (MCR) against high glucose (HG)-induced oxidative damage in PC12 cells. Cell cytotoxicity was examined using MTT and lactate dehydrogenase assays. To examine the antioxidative effects, intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the activities of antioxidant enzymes were measured. The expressions of apoptosis-associated proteins were assessed. MCR was found to increase the viabilities of HG-induced PC12 cells and to inhibit ROS and MDA production and to promote antioxidative enzyme activities. Furthermore, MCR reduced apoptosis by upregulating p-Akt and Bcl-2/Bax ratio and reducing cytochrome c level. The main flavonoids in MCR were identified by HPLC to be kuwanon G and morusin. These results suggest the antioxidative effects of MCR protect against HG-induced oxidative stress and that MCR has potential therapeutic use for the prevention and treatment of diabetic neuro-degeneration.  相似文献   

11.
This study investigates the protective effect of aquacultured flounder fish-derived peptide (AFFP) against 2,2-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidative damage in a zebrafish model. Zebrafish embryos were evaluated for the protective effect by heartbeat rate, survival rate, ROS generation, lipid peroxidation, and cell death. In the results, the AAPH group showed a low survival rate, whereas the AFFP and AAPH co-treated group increased a survival rate. Also, AFFP dose-dependently reduced AAPH-induced intracellular ROS and lipid peroxidation, and decreased cell death in AAPH-induced zebrafish. These results revealed that AFFP could be used as a natural antioxidant, and that the zebrafish provides an alternative in vivo model to efficiently evaluate the antioxidative effects of peptides on fishes.  相似文献   

12.
The response of bean leaves to UV-B radiation was extensively investigated. UV-B radiation caused increase of ion leakage, loss of chlorophyll, and decrease of the maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (PhiPSII) of bean leaves. H2O2 contents and the extent of thylakoid membrane protein oxidation increased, indicated by the decrease of thiol contents and the increase of carbonyl contents with the duration of UV-B radiation. Addition of sodium nitroprusside, a nitric oxide (NO) donor, can partially alleviate UV-B induced decrease of chlorophyll contents, Fv/Fm and PhiPSII. Moreover, the oxidative damage to the thylakoid membrane was alleviated by NO. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger, arrested NO mediated protective effects against UV-B induced oxidative damage. Incubation of thylakoid membrane with increasing H2O2 concentrations showed a progressive enhancement in carbonyl contents. H2O2 contents were decreased in the presence of NO under UV-B radiation through increased activities of superoxide dismutases, ascorbate peroxidases, and catalases. Taken together, the results suggest that NO can effectively protect plants from UV-B damage mostly probably mediated by enhanced activities of antioxidant enzymes.  相似文献   

13.
Aqueous-saline human placenta extract (HPE) is known to possess antioxidant activity due to the high concentration of bioactive substances. This fact allows its application in clinical practice in order to treat oxidation-induced diseases. Extract antioxidant activity is mainly conditioned by proteins. Freezing of extracts has been shown to lead to their antioxidant activity increasing due to protein conformation changes.  相似文献   

14.
Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.  相似文献   

15.
The effect of aminoguanidine (AG) against toxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice was investigated. A single dose of PQ (50 mg/kg, i.p.) induced lung-toxicity, manifested by significant decrease of the activity of angiotensin converting enzyme (ACE) in lung tissue indicating pulmonary capillary endothelial cell damage. Lung toxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content and significant increase in lipid peroxidation measured as malondialdehyde (MDA) in lung tissues. Oral pretreatment of mice with AG (50 mg/kg) in drinking water, starting 5 days before PQ injection and continuing during the experimental period, ameliorated the lung toxicity induced by PQ. This was evidenced by a significant increase in the levels of ACE activity, a significant decrease in lung MDA content and a significant increase in the total sulfhydryl content 24 h after PQ administration. Moreover, pretreatment of mice with AG leads to an increase of the LD(50) value of paraquat. These results indicate that AG is an efficient cytoprotective agent against PQ-induced lung toxicity.  相似文献   

16.
17.
18.
The aim of this study is to investigate the inhibitory effects of aminoethyl-chitooligosaccharides (AE-COS) on oxidative stress in mouse macrophages (RAW 264.7 cells). The inhibitory effects of AE-COS on DNA and protein oxidation were studied in RAW 264.7 cells. Furthermore, free radical scavenging effect of AE-COS were determined in RAW264.7 cells by 2',7'-dichlorofluorescein (DCF) intensity and intracellular glutathione (GSH) level. AE-COS also inhibited myeloperoxidase (MPO) activity in human myeloid cells (HL-60). These results suggest that AE-COS acts as a potential free radical scavenger in RAW 264.7 cells.  相似文献   

19.
Xie  Ning  Geng  Na  Zhou  Dong  Xu  Yuliang  Liu  Kangping  Liu  Yongxia  Liu  Jianzhu 《Molecular biology reports》2019,46(1):301-308
Molecular Biology Reports - Anthocyanin is a natural plant pigment that acts as an antioxidant and scavenges free radicals. This study aimed to investigate the potential protective role of...  相似文献   

20.
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号