首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions.  相似文献   

2.
MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.  相似文献   

3.
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.  相似文献   

4.
Krosky DJ  Schwarz FP  Stivers JT 《Biochemistry》2004,43(14):4188-4195
To efficiently maintain their genomic integrity, DNA repair glycosylases must exhibit high catalytic specificity for their cognate damaged bases using an extrahelical recognition mechanism. One possible contribution to specificity is the weak base pairing and inherent instability of damaged sites which may lead to increased extrahelicity of the damaged base and enhanced recognition of these sites. This model predicts that the binding affinity of the enzyme should increase as the thermodynamic stability of the lesion base pair decreases, because less work is required to extrude the base into its active site. We have tested this hypothesis with uracil DNA glycosylase (UDG) by constructing a series of DNA duplexes containing a single uracil (U) opposite a variety of bases (X) that formed from zero to three hydrogen bonds with U. Linear free energy (LFE) relationships were observed that correlated UDG binding affinity with the entropy and enthalpy of duplex melting, and the dynamic accessibility of the damaged site to chemical oxidation. These LFEs indicate that the increased conformational freedom of the damaged site brought about by enthalpic destabilization of the base pair promotes the formation of extrahelical states that enhance specific recognition by as much as 3000-fold. However, given the small stability differences between normal base pairs and U.A or U.G base pairs, relative base pair stability contributes little to the >10(6)-fold discrimination of UDG for uracil sites in cellular DNA. In contrast, the intrinsic instability of other more egregious DNA lesions may contribute significantly to the specificity of other DNA repair enzymes that bind to extrahelical bases.  相似文献   

5.
Using HU chemical nucleases to probe HU-DNA interactions, we report here for the first time site-specific binding of HU to naked DNA. An unique feature of this interaction is the absolute requirement for negative DNA supercoiling for detectable levels of site-specific DNA binding. The HU binding site is the Mu spacer between the L1 and L2 transposase binding sites. Our results suggest recognition of an altered DNA structure which is induced by DNA supercoiling. We propose that recruitment of HU to this naked DNA site induces the DNA bending required for productive synapsis and transpososome assembly. Implications of HU as a supercoiling sensor with a potential in vivo regulatory role are discussed. Finally, using HU nucleases we have also shown that non-specific DNA binding by HU is stimulated by increasing levels of supercoiling.  相似文献   

6.
Parker JB  Stivers JT 《Biochemistry》2011,50(5):612-617
The prodrug 5-fluorouracil (5-FU), after activation into 5-F-dUMP, is an extensively used anticancer agent that inhibits thymidylate synthase and leads to increases in dUTP and 5-F-dUTP levels in cells. One mechanism for 5-FU action involves DNA polymerase mediated incorporation of dUTP and 5-F-dUTP into genomic DNA leading to U/A, 5-FU/A, or 5-FU/G base pairs. These uracil-containing lesions are recognized and excised by several human uracil excision repair glycosylases (hUNG2, hSMUG2, and hTDG) leading to toxic abasic sites in DNA that may precipitate cell death. Each of these enzymes uses an extrahelical base recognition mechanism, and previous studies with UNG have shown that extrahelical recognition is facilitated by destabilized base pairs possessing kinetically enhanced base pair opening rates. Thus, the dynamic properties of base pairs containing 5-FU and U are an important unknown in understanding the role of these enzymes in damage recognition and prodrug activation. The pH dependence of the (19)F NMR chemical shift of 5-FU imbedded in a model trinucleotide was used to obtain a pK(a) = 8.1 for its imino proton (10 °C). This is about 1.5 units lower than the imino protons of uracil or thymine and indicates that at neutral pH 5-FU exists significantly as an ionized tautomer that can mispair with guanine during DNA replication. NMR imino proton exchange measurements show that U/A and 5-FU/A base pairs open with rate constants (k(op)) that are 6- and 13-fold faster than a T/A base pair in the same sequence context. In contrast, these same base pairs have apparent opening equilibrium constants (αK(op)) that differ by less than a factor of 2, indicating that the closing rates (k(cl)) are enhanced by nearly equal amounts as k(op). These dynamic measurements are consistent with the previously proposed kinetic trapping model for extrahelical recognition by UNG. In this model, the enhanced intrinsic opening rates of destabilized base pairs allow the bound glycosylase to sample dynamic extrahelical excursions of thymidine and uracil bases as the first step in recognition.  相似文献   

7.
Rotation of a DNA nucleotide out of the double helix and into a protein binding pocket (“base flipping”) was first observed in the structure of a DNA methyltransferase. There is now evidence that a variety of proteins, particularly DNA repair enzymes, use base flipping in their interactions with DNA. Though the mechanisms for base movement into extrahelical positions are still unclear, the focus of this review is how base recognition is modulated by the stringency of binding to the extrahelical base(s) or sugar moiety. © 1997 John Wiley & Sons, Inc. Biopoly 44: 139–151, 1997  相似文献   

8.
Clusters of closely spaced oxidative DNA lesions present challenges to the cellular repair machinery. When located in opposing strands, base excision repair (BER) of such lesions can lead to double strand DNA breaks (DSB). Activation of BER and DSB repair pathways has been implicated in inducing enhanced expansion of triplet repeat sequences. We show here that energy coupling between distal lesions (8oxodG and/or abasic sites) in opposing DNA strands can be modulated by a triplet repeat bulge loop located between the lesion sites. We find this modulation to be dependent on the identity of the lesions (8oxodG vs. abasic site) and the positions of the lesions (upstream vs. downstream) relative to the intervening bulge loop domain. We discuss how such bulge loop‐mediated lesion crosstalk might influence repair processes, while favoring DNA expansion, the genotype of triplet repeat diseases. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 355–369, 2010. This article was originally published online as an acceptedpreprint. The “Published Online” date corresponds to the preprint version. You can reqest a copy of the preprint byemailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
McMurray CT 《DNA Repair》2008,7(7):1121-1134
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.  相似文献   

10.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

11.
The solution structure of the complex formed between an oligonucleotide containing a two-base bulge (5'-CACGCAGTTCGGAC.5'-GTCCGATGCGTG) and ent-DDI, a designed synthetic agent, has been elucidated using high-resolution NMR spectroscopy and restrained molecular dynamic simulation. Ent-DDI is a left-handed wedge-shaped spirocyclic molecule whose aglycone portion is an enantiomer of DDI, which mimics the spirocyclic geometry of the natural product, NCSi-gb, formed by base-catalyzed activation of the enediyne antibiotic neocarzinostatin. The benzindanone moiety of ent-DDI intercalates between the A6.T21 and the T9.A20 base pairs, overlapping with portions of the purine bases; the dihydronaphthalenone moiety is positioned in the minor groove along the G7-T8-T9 bulge sequence; and the aminoglycoside is in the middle of the minor groove, approaching A20 of the nonbulged strand. This alignment of ent-DDI along the DNA helical duplex is in the reverse direction to that of DDI. The aminoglycoside moiety of ent-DDI is positioned in the 3' direction from the bulge region, whereas that of the DDI is positioned in the 5' direction from the same site. This reverse binding orientation within the bulge site is the natural consequence of the opposite handedness imposed by the spirocyclic ring junction and permits the aromatic ring systems of the two spirocyclic enantiomers access to the bulge region. NMR and CD data indicate that the DNA in the DDI-bulged DNA complex undergoes a larger conformational change upon complex formation in comparison to the ent-DDI-bulged DNA, explaining the different binding affinities of the two drugs to the bulged DNA. In addition, there are different placements of the bulge bases in the helical duplex in the two complexes. One bulge base (G7) stacks inside the helix, and the other one (T8) is extrahelical in the DDI-bulged DNA complex, whereas both bulge bases in the ent-DDI-bulged DNA complex prefer extrahelical positions for drug binding. Elucidation of the detailed binding characteristics of the synthetic spirocyclic enantiomers provides a rational basis for the design of stereochemically controlled drugs for bulge binding sites.  相似文献   

12.
13.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

14.
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).  相似文献   

15.
16.
The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.  相似文献   

17.
Stary A  Sarasin A 《Biochimie》2002,84(1):49-60
All living organisms are constantly exposed to endogenous or exogenous agents that can cause damage to the genomic DNA, leading to the loss of stable genetic information. Fortunately, all cells are equipped with numerous classes of DNA repair pathways which are able to correct many kinds of DNA damage such as bulky adducts, oxidative lesions, single- and double-strand breaks and mismah.The importance of these DNA repair processes is attested by the existence of several rare but dramatic hereditary diseases caused by defects in one of their repair pathways. These diseases are usually associated with early onset of malignancies confirming the direct relationship between unrepaired DNA lesions, mutations or chromosomal modifications and cancer incidence. Among these hereditary diseases the UV-hypersensitive ones have been particularly well studied and the xeroderma pigmentosum (XP) is probably the best known syndrome up to now in terms of genetics and biochemistry.  相似文献   

18.
Nucleoid sedimentation analysis was applied to the study of DNA supercoiling repair in cultured FR 3T3 fibroblasts exposed to low doses of fast neutrons or gamma-rays. Supercoiling was fully restored in both instances upon post-irradiation at 37 degrees C, but the rate of repair of neutron-induced lesions was lower than that for gamma-rays. Non-repairable breaks were not evidenced at the neutral pH used. We suggest that the non-repairable alkali-labile sites evidenced by others in neutron-irradiated DNA do not prevent strand break rejoining and subsequent recovery of the tertiary DNA structure.  相似文献   

19.
Repair of UV lesions in nucleosomes--intrinsic properties and remodeling   总被引:2,自引:0,他引:2  
Thoma F 《DNA Repair》2005,4(8):855-869
Nucleotide excision repair and reversal of pyrimidine dimers by photolyase (photoreactivation) are two major pathways to remove UV-lesions from DNA. Here, it is discussed how lesions are recognized and removed when the DNA is condensed into nucleosomes. During the recent years it was shown that nucleosomes inhibit photolyase and excision repair in vitro and slow down repair in vivo. The correlation of DNA-repair rates with nucleosome positions in yeast suggests that intrinsic properties of nucleosomes such as mobility and transient unwrapping of nucleosomal DNA facilitate damage recognition. Moreover, it was shown that nucleosome remodeling activities can act on UV-damaged DNA in vitro and facilitate repair suggesting that random remodeling of chromatin might contribute to damage recognition in vivo. Recent work on nucleosome structure and mobility is included to evaluate how nucleosomes accommodate DNA lesions and how nucleosome mobility and remodeling can take place on damaged DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号