首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Cytosolic Ca2+ mobilization, especially Ca2+ entry, is enhanced in platelets from type 2 diabetic individuals, which might result in platelet hyperaggregability. In the present study, we report an increased oxidant production in resting and stimulated platelets from diabetic donors. Pretreatment of platelets with catalase or trolox, an analog of vitamin E, reversed the enhanced Ca2+ entry, evoked by thapsigargin plus ionomycin or thrombin, observed in platelets from diabetic subjects, so that in the presence of these scavengers Ca2+ entry was similar in platelets from healthy and diabetic subjects. In contrast, mannitol was without effect on Ca2+ mobilization. Catalase and trolox reduced thrombin-induced aggregation in platelets from type 2 diabetic subjects, while mannitol did not modify thrombin-induced platelet hyperaggregability. We conclude that H2O2 and ONOO are likely involved in the enhanced Ca2+ mobilization observed in platelets from type 2 diabetic patients, which might lead to platelet hyperactivity and hyperaggregability.  相似文献   

2.
Type 2 diabetes mellitus induces a number of cardiovascular disorders, including platelet hyperactivity and hyperaggregability, which is associated to an increased oxidant production and abnormal cytosolic Ca2+ mobilization. In the present study, we have investigated the effect of cinnamtannin B-1 obtained from bay wood on oxidants production, Ca2+ mobilization and aggregation in platelets from type 2 diabetic donors. Pretreatment of platelets with cinnamtannin B-1 reversed the enhanced oxidants production and Ca2+ mobilization, including Ca2+ entry, evoked by thapsigargin plus ionomycin or thrombin, observed in platelets from diabetic subjects, so that in the presence of cinnamtannin B-1 Ca2+ entry was similar in platelets from healthy and diabetic subjects. In addition, cinnamtannin B-1 reduced thrombin-induced aggregation in platelets from type 2 diabetic subjects. We conclude that cinnamtannin B-1 exerts an effective antioxidant action in platelets from patients with type 2 diabetes mellitus and reverses the enhanced Ca2+ mobilization and hyperaggregability.  相似文献   

3.
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.  相似文献   

4.
The mechanisms involved in the effect of ethanol on Ca2+ entry and aggregability have been investigated in human platelets in order to shed new light on the pathogenesis of alcohol consumption. Ethanol (50 mM) induced H2O2 production in platelets by Ca2+-dependent and independent mechanisms. Ca2+ entry induced by ethanol was impaired by catalase. Ethanol reduced SOCE mediated by depletion of the 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive acidic stores but enhances SOCE regulated by the dense tubular system. This effect was abolished by treatment with catalase or the sulphydryl group reducing agent dithiotreitol (DTT). Similarly, the anti-aggregant effect of ethanol was prevented by platelet treatment with catalase or DTT. In conclusion we provide considerable evidence that ethanol alters Ca2+ entry and reduces thrombin-induced aggregation as a result of the generation of H2O2 and the oxidation of sulphydryl groups in human platelets.  相似文献   

5.
Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca(2+)-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca(2+)-activated (I(Cl(Ca))) and volume-regulated (I(Cl, swell)) chloride currents. NPPB and DIDS more efficiently inhibited I(Cl(Ca)) and I(Cl, swell), respectively. Cell swelling caused by hypotonic solution invariably activated I(Cl, swell) while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling-induced I(Cl, swell), while its inactive analogue U-73343 had no effect. I(Cl(Ca)) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, I(Cl, swell) could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced I(Cl, swell) in a nonadditive manner, suggesting their convergence on a common pathway. I(Cl, swell) and I(Cl(Ca)) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated I(Cl(Ca)), but abolished I(Cl, swell), thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that I(Cl, swell) can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a "selection" switch between closely localized channels.  相似文献   

6.
The alteration in calcium transport in the liver of rats with streptozocin(STZ)-diabetic state was investigated. STZ (6 mg/100 g body weight) was subcutaneously administered in rats, and 1 or 2 weeks later they were sacrificed by bleeding. STZ administration caused a remarkable elevation of serum glucose concentration. Liver calcium content was significantly increased by STZ administration. Hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity was markedly elevated by STZ administration. This increase was completely abolished by the presence of staurosporine (10-7-10-5 M), an inhibitor of protein kinase C, in the enzyme reaction mixture, suggesting an involvement of protein kinase C signalling. Moreover, the STZ-induced increase in liver plasma membrane (Ca2+-Mg2+)-ATPase activity was significantly raised by the presence of okadaic acid (10-5 and 10-4 M). Meanwhile, the STZ-increased (Ca2+-Mg2+)-ATPase activity was not appreciably altered by the presence of anti-regucalcin IgG in the reaction mixture, indicating that the activatory protein regucalcin does not participate in the elevation of the enzyme activity. The present study demonstrates that STZ-induced diabetes causes the increase in hepatic plasma membrane (Ca2+-Mg2+)-ATPase activity of rats.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号