首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract For the identification of toxin A of Clostridium difficile , a 2-dimensional gel system was used. In its first dimension, samples were separated in the absence of reducing and dissociating agents, conditions which maintained the activity of the enterotoxin. This was followed by reduction and dissociation in the second dimension where a 230 kDa polypeptide was electroeluted. Rabbits were immunized with polyacrylamide gel slices containing entrapped native toxin A and the denatured 230 kDa protein. As revealed by immunoblotting, neutralizing antisera derived from native protein samples recognized the native toxin, the denatured 230 kDa protein and another polypeptide of about M r 35 000. Using both types of antisera as probes the pI of the enterotoxin was about 5.9. Preliminary evidence suggests that the enterotoxin is a multimeric protein of 230 kDa and 35 kDa subunits.  相似文献   

2.
Very different toxins are responsible for the two types of gastrointestinal diseases caused by Bacillus cereus: the diarrhoeal syndrome is linked to nonhemolytic enterotoxin NHE, hemolytic enterotoxin HBL, and cytotoxin K, whereas emesis is caused by the action of the depsipeptide toxin cereulide. The recently identified cereulide synthetase genes permitted development of a molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers. The enterotoxin genes of 49 strains, belonging to different phylogenetic branches of the B. cereus group, were partially sequenced to encompass the molecular diversity of these genes. The sequence alignments illustrated the high molecular polymorphism of B. cereus enterotoxin genes, which is necessary to consider when establishing PCR systems. Primers directed towards the enterotoxin complex genes were located in different CDSs of the corresponding operons to target two toxin genes with one single set of primers. The specificity of the assay was assessed using a panel of B. cereus strains with known toxin profiles and was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations.  相似文献   

3.
Both the bacterium Photorhabdus luminescens alone and its symbiotic Photorhabdus-nematode complex are known to be highly pathogenic to insects. The nature of the insecticidal activity of Photorhabdus bacteria was investigated for its potential application as an insect control agent. It was found that in the fermentation broth of P. luminescens strain W-14, at least two proteins, toxin A and toxin B, independently contributed to the oral insecticidal activity against Southern corn rootworm. Purified toxin A and toxin B exhibited single bands on native polyacrylamide gel electrophoresis and two peptides of 208 and 63 kDa on SDS-polyacrylamide gel electrophoresis. The native molecular weight of both the toxin A and toxin B was determined to be approximately 860 kDa, suggesting that they are tetrameric. NH2-terminal amino acid sequencing and Western analysis using monospecific antibodies to each toxin demonstrated that the two toxins were distinct but homologous. The oral potency (LD50) of toxin A and toxin B against Southern corn rootworm larvae was determined to be similar to that observed with highly potent Bt toxins against lepidopteran pests. In addition, it was found that the two peptides present in toxin B could be processed in vitro from a 281-kDa protoxin by endogenous P. luminescens proteases. Proteolytic processing was shown to enhance insecticidal activity.  相似文献   

4.
A large number of bacterial toxins, viruses and bacteria target carbohydrate derivatives on the cell surface to attach and gain entry into the cell. We report here the use of a monosaccharide-based array to detect protein toxins. The array-based technique provides the capability to perform simultaneous multianalyte analyses. Arrays of N-acetyl galactosamine (GalNAc) and N-acetylneuraminic acid (Neu5Ac) derivatives were immobilized on the surface of a planar waveguide and were used as receptors for protein toxins. These arrays were probed with fluorescently labeled bacterial cells and protein toxins. While Salmonella typhimurium, Listeria monocytogenes, Escherichia coli and staphylococcal enterotoxin B (SEB) did not bind to either of the monosaccharides, both cholera toxin and tetanus toxin bound to GalNAc and Neu5Ac. The results show that the binding of the toxins to the carbohydrates is density dependent and semi-selective. Both toxins were detectable at 100 ng/ml.  相似文献   

5.
A cholera-like enterotoxin was purified from Vibrio cholerae O139 strain AI-1841 isolated from a diarrheal patient in Bangladesh. Its characteristics were compared with that of cholera toxins (CTs) of classical strain 569B and El Tor strain KT25. Al-1841 produced as much toxin as O1 strains. The toxins were indistinguishable in terms of their migration profiles in conventional polyacrylamide gel disc electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectrofocusing as well as their affinity for hydroxyapatite. The skin permeability factor activity and the fluid accumulation induced in rabbit ileal loops of the toxin of AI-1841 were identical to those of the CTs. Three toxins equally reacted against anti-569B CT antiserum in Western blotting, and their B subunits formed a precipitin line against any anti-B subunit antiserum by double gel immunodiffusion. Anti-569B CTB antibody neutralized the three toxins in their PF activities and enterotoxicities. The amino acid sequence of 1841 toxin B subunit was identical with that of KT25 CTB, corresponding to the DNA sequence of ctxB from El Tor strains of the seventh pandemic. We concluded 1841 toxin was identical to CT of the seventh pandemic El Tor vibrios.  相似文献   

6.
Abstract Clostridium difficile has been demonstrated to produce at least two toxins: an enterotoxin (toxin A) which elicits haemorrhagoc fluid accumulation in the rabbit ileal loop (RIL) test and a potent cytotoxin (toxin B). We report the isolation of an enterotoxic factor inducing a positive response in the RIL test without haemorrhage. This factor was separated by ion-exchange chromatography and its molecular weight, as estimated by SDS-polyacrylamide gel electrophoresis, was about 45 000.  相似文献   

7.
Staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 are the super antigens responsible for diseases such as staphylococcal food poisoning and toxic shock syndrome. At low serum concentrations, SEB can trigger toxic shock, profound hypotension and multi organ failure and hence is recognized as biowarfare molecule. In this study, a multidomain fusion protein (r-TE) was generated with specificity for SEB and toxic shock syndrome toxin (Tsst-1). The fusion gene comprising the conserved regions of seb and the tsst genes was codon-optimized for expression in Escherichia coli and encoded a 26 kDa recombinant multidomain chimeric protein (r-TE). Hyperimmune antiserum raised against r-TE specifically reacted with SEB (~28 kDa) and Tsst-1 (~22 kDa) components during Western blot analysis and by plate ELISA in confirmed toxin producing strains of S. aureus. The antigenicity of the SEB component of the r-TE protein was also confirmed using TECRA kit. The described procedure of creating a single protein molecule carrying components of two different toxins whilst still retaining the original antigenic determinants of individual toxins proved highly advantageous in the development of rapid, reliable and cost effective immunoassays and may also have the potential to serve as candidate molecule for vaccine studies.  相似文献   

8.
Shiga toxins (Stx) are potent ribosome-inactivating toxins that are produced by Shigella dysenteriae type 1 or certain strains of Escherichia coli. These toxins are composed of one A subunit that can be nicked and reduced to an enzymatically active A1(approximately 27 kDa) and an A2 peptide (approximately 4 kDa) as well as a pentamer of B subunits (approximately 7 kDa/monomer) that binds the eukaryotic cell. Purified Shiga toxin type 2d is activated 10- to 1000-fold for Vero cell toxicity by preincubation with mouse or human intestinal mucus or purified mouse elastase, whereas Stx2, Stx2c, Stx2e and Stx1 are not activatable. E. coli strains that produce the activatable Stx2d are more virulent in a streptomycin (str)-treated mouse model of infection [lethal dose 50% (LD50) = 101] than are E. coli strains that produce any other type of Stx (LD50 = 1010). To identify the element(s) of Stx2d that are required for mucus-mediated activation, toxin genes were constructed such that the expressed mutant toxins consisted of hybrids of Stx2d and Stx1, Stx2 or Stx2e, contained deletions of up to six amino acids from the C-terminus of the A2 of Stx2d or were altered in one or both of the two amino acids of the A2 of Stx2d that represent the only amino acid differences between the activatable Stx2d and the non-activatable Stx2c. Analysis of these mutant toxins revealed that the A2 portion of Stx2d is required for toxin activation and that activation is abrogated if the Stx1 or Stx2e B subunit is substituted for the Stx2d B polypeptide. Furthermore, mass spectrometry performed on buffer- or elastase-treated Stx2d indicated that the A2 peptide of the activated Stx2d was two amino acids smaller than the A2 peptide from buffer-treated Stx2d. This finding, together with the toxin hybrid results, suggests that activation involves B pentamer-dependent cleavage by elastase of the C-terminal two amino acids from the Stx2d A2 peptide.  相似文献   

9.
Abstract The immunological properties of Campylobacter jejuni enterotoxin (CJT) and cholera toxin (CT) were compared by enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis with antiserum against each toxin. Antibody against CJT recognized the 68, 54 and 43 kDa polypeptides of CJT and the 11 kDa subunit of CT, whereas antibody against CT recognized the 68 and 54 kDa polypeptides of CJT and 11 kDa subunit of CT. The immunological reactions between the heterogenous combinations of toxins and the antibodies were weaker than those between the homogenous systems. Thus, different antigenicity was found in CJT and CT at the subunit level, although they possessed cross-reactive epitope(s). The binding of CJT and CT to gangliosides was also examined. CJT and CT bound to GM1 ganglioside preferentially than to other ganglioside species. However, CJT did not bind to GD1b in spite of the fact that CT preferred GD1b. This suggests that both toxins recognize different receptors on the surface of the target cell. This study is the first demonstration of the different properties between CJT and CT in immunological character and ganglioside recognition.  相似文献   

10.
Supplementation of a minimal medium with high levels of arginine (20 g/liter) markedly decreased neurotoxin titers and protease activities in cultures of Clostridium botulinum Okra B and Hall A. Nitrogenous nutrients that are known to be derived from arginine, including proline, glutamate, and ammonia, also decreased protease and toxin but less so than did arginine. Proteases synthesized during growth were rapidly inactivated after growth stopped in media containing high levels of arginine. Separation of extracellular proteins by electrophoresis and immunoblots with antibodies to toxin showed that the decrease in toxin titers in media containing high levels of arginine was caused by both reduced synthesis of protoxin and impaired proteolytic activation. In contrast, certain other nutritional conditions stimulated protease and toxin formation in C. botulinum and counteracted the repression by arginine. Supplementation of the minimal medium with casein or casein hydrolysates increased protease activities and toxin titers. Casein supplementation of a medium containing high levels of arginine prevented protease inactivation. High levels of glucose (50 g/liter) also delayed the inactivation of proteases in both the minimal medium and a medium containing high levels of arginine. These observations suggest that the availability of nitrogen and energy sources, particularly arginine, affects the production and proteolytic processing of toxins and proteases in C. botulinum.  相似文献   

11.
Supplementation of a minimal medium with high levels of arginine (20 g/liter) markedly decreased neurotoxin titers and protease activities in cultures of Clostridium botulinum Okra B and Hall A. Nitrogenous nutrients that are known to be derived from arginine, including proline, glutamate, and ammonia, also decreased protease and toxin but less so than did arginine. Proteases synthesized during growth were rapidly inactivated after growth stopped in media containing high levels of arginine. Separation of extracellular proteins by electrophoresis and immunoblots with antibodies to toxin showed that the decrease in toxin titers in media containing high levels of arginine was caused by both reduced synthesis of protoxin and impaired proteolytic activation. In contrast, certain other nutritional conditions stimulated protease and toxin formation in C. botulinum and counteracted the repression by arginine. Supplementation of the minimal medium with casein or casein hydrolysates increased protease activities and toxin titers. Casein supplementation of a medium containing high levels of arginine prevented protease inactivation. High levels of glucose (50 g/liter) also delayed the inactivation of proteases in both the minimal medium and a medium containing high levels of arginine. These observations suggest that the availability of nitrogen and energy sources, particularly arginine, affects the production and proteolytic processing of toxins and proteases in C. botulinum.  相似文献   

12.
Detection of biological toxins on an active electronic microchip   总被引:3,自引:0,他引:3  
An electric-field-driven assay for fluorescein-labeled staphylococcal enterotoxin B and cholera toxin B was developed on an active electronic microchip. An array of microlocations was transformed into an immunoassay array by electronically biasing electrodes at each microlocation to attract biotinylated capture antibodies. The electric field generated on the array directed the transport, concentration, and binding of biotinylated capture antibodies to streptavidin-coated microlocations. Subsequently, solutions of fluorescein-labeled staphylococcal enterotoxin B and fluorescein-labeled cholera toxin B were electronically addressed to the assay sites by an applied electric field. Each toxin was specifically bound to microlocations containing the appropriate capture antibody with little nonspecific binding to assay sites lacking the appropriate capture antibody. It was possible to detect both toxins from a mixture in a single electronic addressing step; detection was accomplished after a 1-min application of the electric field followed by washing. The ability to perform a rapid, electric field-mediated immunoassay for multiple analytes may provide an advantage over existing approaches.  相似文献   

13.
Ninety-five fecal samples from Atlantic cod (Gadus morhua L.), caught along the northern Norwegian coast, were examined bacteriologically for occurrence of C. perfringens. Isolates were examined by polymerase chain reaction (PCR) for genes encoding the four lethal toxins (alpha, beta, epsilon, and iota) for classification into toxin types and for genes encoding enterotoxin and the novel beta2 toxin for further subclassification. In addition, a commercial enzyme-linked immunosorbent assay (ELISA) kit for detection of C. perfringens alpha, beta, and epsilon toxin was used. Clostridium perfringens could be isolated in 37 fecal samples (38.9%) from cod. All isolates were C. perfringens toxin type A (alpha toxin positive) as determined by PCR and also ELISA. In addition, in isolates from two cod (2.1%) the gene encoding for beta2 toxin was found (A, beta2) by PCR. Genes encoding for beta, epsilon, and iota toxins and enterotoxin were not found. This is the first detection of C. perfringens alpha and beta2 toxin in cod and of beta2 toxin in fish in general. The origin of this bacterium in cod is discussed.  相似文献   

14.
Cholera toxin (Ctx) from Vibrio cholerae and its closely related homologue, heat-labile enterotoxin (Etx) from Escherichia coli have become superb tools for illuminating pathways of cellular trafficking and immune cell function. These bacterial protein toxins should be viewed as conglomerates of highly evolved, multi-functional elements equipped to engage the trafficking and signalling machineries of cells. Ctx and Etx are members of a larger family of A-B toxins of bacterial (and plant) origin that are comprised of structurally and functionally distinct enzymatically active A and receptor-binding B sub-units or domains. Intoxication of mammalian cells by Ctx and Etx involves B pentamer-mediated receptor binding and entry into a vesicular pathway, followed by translocation of the enzymatic A1 domain of the A sub-unit into the target cell cytosol, where covalent modification of intracellular targets leads to activation of adenylate cyclase and a sequence of events culminating in life-threatening diarrhoeal disease. Importantly, Ctx and Etx also have the capacity to induce a wide spectrum of remarkable immunological processes. With respect to the latter, it has been found that these toxins activate signalling pathways that modulate the immune system. This review explores the complexities of the cellular interactions that are engaged by these bacterial protein toxins, and highlights some of the new insights to have recently emerged.  相似文献   

15.
Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.  相似文献   

16.
Type IIb heat-labile enterotoxin (LT-IIb) is produced by Escherichia coli 41. Restriction fragments of total cell DNA from strain 41 were cloned into a cosmid vector, and one cosmid clone that encoded LT-IIb was identified. The genes for LT-IIb were subcloned into a variety of plasmids, expressed in minicells, sequenced, and compared with the structural genes for other members of the Vibrio cholerae-E. coli enterotoxin family. The A subunits of these toxins all have similar ADP-ribosyltransferase activity. The A genes of LT-IIa and LT-IIb exhibited 71% DNA sequence homology with each other and 55 to 57% homology with the A genes of cholera toxin (CT) and the type I enterotoxins of E. coli (LTh-I and LTp-I). The A subunits of the heat-labile enterotoxins also have limited homology with other ADP-ribosylating toxins, including pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A. The B subunits of LT-IIa and LT-IIb differ from each other and from type I enterotoxins in their carbohydrate-binding specificities. The B genes of LT-IIa and LT-IIb were 66% homologous, but neither had significant homology with the B genes of CT, LTh-I, and LTp-I. The A subunit genes for the type I and type II enterotoxins represent distinct branches of an evolutionary tree, and the divergence between the A subunit genes of LT-IIa and LT-IIb is greater than that between CT and LT-I. In contrast, it has not yet been possible to demonstrate an evolutionary relationship between the B subunits of type I and type II heat-labile enterotoxins. Hybridization studies with DNA from independently isolated LT-II producing strains of E. coli also suggested that additional variants of LT-II exist.  相似文献   

17.
The mode of action of Cry toxins has been described principally in lepidopteran insects as a multistep process. In this work we describe the mode of action of a Cry toxin active in the common pine sawfly Diprion pini (Hymenoptera, Diprionidae), considered a major forest pest in Europe. Strain PS86Q3 contains a long bipyramidal crystal composed of five major proteins. The N-terminal sequence shows that the 155 kDa protein corresponds to Cry5B toxin and the other proteins belong to the Cry5A subgroup. PCR analysis indicates the presence of cry5Ac and cry5Ba genes, suggesting that Cry5A protein should be Cry5Ac. Activation of protoxins with trypsin or with midgut content from D. pini and Cephacia abietis (Hymenoptera, Pamphiliidae) (spruce webspinning sawfly), another important hymenopteran forest pest, produced a single 75 kDa toxin that corresponded to Cry5A by N-terminal sequence and is responsible for the insecticidal activity. Homologous competition experiments with D. pini and C. abietis brush border membrane vesicles (BBMV) showed that the binding interaction of Cry5A is specific. Membrane potential measurements using a fluorescent dye indicate that Cry5A toxin at nM concentration caused immediate permeability changes in the BBMV isolated from both hymenopteran larvae. The initial response and the sustained permeability change are cationic as previously shown for Cry1 toxins. These results indicate that the hymenopteran specific Cry5A toxin exerts toxicity by a similar mechanism as Cry1 toxins.  相似文献   

18.
Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca. 20 kDa. The cloned 21-kDa fragment consisting of the N-terminal region of the toxin was previously shown to be capable of permeabilizing liposomes. The present study was designed to test the following hypotheses: (1) Cry4B, like several other Bt toxins, is a channel-forming toxin in plannar lipid bilayers; and (2) the 21-kDa N-terminal region, which maps for the first five helices (alpha1-alpha5) of domain 1 in other Cry toxins, and which putatively shares a similar tri-dimensional structure, is sufficient to account for the ion channel activity of the whole toxin. Using circular dichroism spectroscopy and planar lipid bilayers, we showed that the 21-kDa polypeptide existed as an alpha-helical structure and that both Cry4B and its alpha1-alpha5 fragment formed ion channels of 248 +/- 44 pS and 207 +/- 23 pS, respectively. The channels were cation-selective with a potassium-to-chloride permeability ratio of 6.7 for Cry4B and 4.5 for its fragment. However, contrary to the full-length toxin, the alpha1-alpha5 region formed channels at low dose; they tended to remain locked in their open state and displayed flickering activity bouts. Thus, like the full-length toxin, the alpha1-alpha5 region is a functional channel former. A pH-dependent, yet undefined region of the toxin may be involved in regulating the channel properties.  相似文献   

19.
The binary (51 and 42 kDa) and 100 kDa mosquito larvicidal toxins of Bacillus sphaericus are expressed at different growth stages of Bacillus. The genes encoding the binary toxin were expressed using T7 expression system of E. coli. In addition, a PCR amplified product containing the coding sequences of the 100 kDa toxin was cloned upstream to the binary toxin genes, and both the toxins were co-expressed in E. coli. Expression studies with these constructs in different E. coli hosts showed that when these two toxins were co-expressed, there was no augmentation of toxicity in comparison to the construct expressing the binary toxin alone. This result apparently indicates that there is no synergism between these two toxins. © Rapid Science Ltd. 1998  相似文献   

20.
Extraction, concentration, and serological detection of staphylococcal enterotoxins from foods are laborious and time consuming. By exposing food extracts to an insoluble matrix tagged with specific anti-enterotoxin B, we have been able to recover the toxin from foods in a sensitive and rapid way. After mixing the reagents for 2 h at room temperature, immunoglobulin G antibodies were attached to CNBr-activated Sepharose 4B at pH 8.5 (0.1 M carbonate buffer with 0.5 M NaCl). Sepharose-antibody complex (1 ml) specifically recovered 0.1 to 30 mug of enterotoxin B from 400 ml of food extract (100 g of food) after mixing for 2 h at 4 C. The Sepharose-antibody-toxin complex was washed with 0.02 M phosphate-buffered saline at pH 7.2, and the toxin was dissociated by 2 to 4 ml of 0.2 M HCl-glycine plus 0.5 M NaCl buffer at pH 2.8. The recovered enterotoxin was free of interfering food components and could be detected serologically. Work to couple antibodies A, B, C, D, and E to Sepharose to recover all five toxins in one step is under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号