首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A G Shivakumar  J Hahn  D Dubnau 《Plasmid》1979,2(2):279-289
The minicell system of Bacillus subtilis has been used to study the expression of plasmid genes using several R plasmids derived from Staphylococcus aureus. pE194, pC194, and pUB110 as well as several mutant and in vitro recombinant derivatives of these plasmids segregate into minicells. A copy control mutant of pE194 was used to show that the extent of segregation is proportional to the copy number. The polypeptides specified by these plasmids were examined by SDS-polyacrylamide gel electrophoresis. Six proteins specified by pE194, an erythromycin resistance plasmid, were identified using cop mutants. These comprise about 90% of the potential coding capacity of the 2.4-Mdal pE194 plasmid. One of these proteins (29,000 daltons) is inducible by erythromycin in the wild type pE194 but is synthesized constitutively in a mutant derivative which also expresses antibiotic resistance constitutively. Several other proteins are detected only in copy control mutants. pUB110, a kanamycin resistance plasmid, expresses three major proteins which comprise 50% of the coding capacity of this 3.0-Mdal plasmid. Two additional minor proteins are occasionally observed. pC194 (2.0 Mdal), which confers chloramphenicol resistance, expresses two polypeptides comprising about 25% of its coding capacity. One of these polypeptides (22,000 daltons) is inducible by chloramphenicol. pBD9, an in vitro composite of pUB110 and pE194, probably expresses all of the major parental plasmid proteins with the exception of one from pUB110 and one from pE194.  相似文献   

2.
pE194 is a small plasmid (isolated originally in Staphylococcus aureus) which confers erythromycin-inducible resistance to macrolide, lincosamide, and streptogramin type B (MLS) antibiotics. The nucleotide sequence of pE194 contains 3,728 base pairs (bp), corresponding to a molecular mass of 2.4 million daltons. By means of site-specific cleavage with restriction endonucleases and cloning resultant fragments, determinants of the two major biological functions of p E194, i.e., inducible MLS resistance and replication, could be localized and assigned to specific sequences in the plasmid. Restriction endonuclease TaqI cut pE194 at three sites. TaqI fragment A (1,443 bp) contained the determinant for inducible MLS resistance, whereas TaqI fragment B (1,354 bp) contained a determinant necessary for plasmid replication. Regulatory mutations resulting in constitutive expression of MLS resistance mapped in TaqI fragment A, whereas a mutation associated with elevated plasmid copy number was mapped in TaqI fragment B. Also mapping in TaqI fragment B was a plasmid replication determinant comprising two sets of inverted complementary repeat sequences, one of which spanned 124 bp and was adjacent to a second smaller set which was rich in guanine and cytosine residues. pE194 contained six open reading frames which were theoretically capable of coding for proteins with maximum molecular masses as follows (in daltons): A, 48,300; B, 29,200; C, 14,000; D, 13,900; E, 12,600; and F, 2,700. Insertion of plasmid pBR322 into the single PstI site located in frame A of pE194 resulted in a composite plasmid which could replicate in both Bacillus subtilis and Escherichia coli, suggesting that an intact polypeptide A is dispensable for both replication of pE194 and for MLS resistance. Frame B specified inducible MLS resistance, whereas frame F specified the putative peptide associated with the proposed B determinant translational attenuator. The extent to which frames C, D, and E, all contained in TaqI fragment B, were translated into polypeptide products is not known; however, a base change in frame E was found in a comparison between the high-copy-number mutant, cop-6, and the wild-type strains.  相似文献   

3.
pE194, a 3.5-kilobase multicopy plasmid, confers resistance to the macrolide-lincosamide-streptogramin B antibiotics in Bacillus subtilis. By molecular cloning and deletion analysis we have identified a replication segment on the physical map of this plasmid, which consists of about 900 to 1,000 base pairs. This segment contains the replication origin. It also specifies a trans-acting function (rep) required for the stable replication of pE194 and a negatively acting copy control function which is the product of the cop gene. The target sites for the rep and cop gene products are also within this region. Two incompatibility determinants have been mapped on the pE194 genome and their properties are described. One (incA) resides within the replication region and may be identical to cop. incB, not located in the replication region, expresses incompatibility toward a copy control mutant (cop-6) but not toward the wild-type replicon.  相似文献   

4.
Summary The sequence and genetic organization was determined of the 2508 by lactococcal portion of pFX2, which was derived from a crypticLactococcus lactis subsp.lactis plasmid and used as the basis for construction of a series of lactococcal vectors. A lactococcal plasmid plus origin and two replication protein-coding regions (repA andrepB) were located. RepA has a helix-turn-helix motif, a geometry typical of DNA-binding proteins. RepB shows a high degree of homology to the plasmid replication initiation proteins from other gram-positive bacteria andMycoplasma. The transcribed inverted repeat sequence betweenrepA andrepB could form an attenuator to regulate pFX2 replication. Upstream of theori site, and in a region which was non-essential for replication, a 215 by sequence identical to the staphylococcal plasmid pE194 and carrying the RSA site was identified. The genetic organization of this lactococcal plasmid replicon shares significant similarity with pE194 group plasmids.  相似文献   

5.
Replication control genes of plasmid pE194.   总被引:28,自引:17,他引:11       下载免费PDF全文
  相似文献   

6.
Resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics is widespread and of clinical importance. B. Weisblum and his coworkers have demonstrated that this resistance is associated with methylation of the 23S ribosomal ribonucleic acid of the large ribosomal subunit which results in a diminished affinity of this organelle for these antibiotics (Lai et al, J. Mol. Biol. 74:67-72, 1973). We report that 10 of 15 natural isolates of Bacillus licheniformis, a common soil organism, are resistant to the MLS antibiotics. The properties of this resistance (high level of tolerance for erythromycin, broad cross-resistance spectrum, and inducibility) suggest that resistance is conferred as described above. The resistance determinant from one of these strains was cloned onto a B. subtilis plasmid vector, and the resulting hybrid plasmid (pBD90) was used to prepare radioactive probe deoxyribonucleic acid for hybridization studies. All of the resistance B. licheniformis strains studied exhibited homology with the pBD90 insert. Plasmid pBD90 showed no homology to the following staphylococcal and streptococcal MLS-resistance plasmids: pE194, pE5, pAM77, pI258. Plasmids pE194 and pE5, on the other hand, carry homologous MLS genes but showed no detectable homology to one another in their replication genes. pBD90 specified a 35,000-dalton erythromycin-inducible protein, detectable in minicells, which therefore appears different from the 29,000-dalton inducible resistance protein specified by pE194. We conclude that there are at least three distinct MLS resistance determinants to be found among gram-positive bacteria.  相似文献   

7.
A strain of Staphylococcus epidermidis was transduced to erythromycin resistance, and all of the transductants exhibited the macrolide, lincosamide, streptogramin B resistance phenotype. Curing and antibiotic disk studies also indicated that these resistances were controlled by a single plasmid determinant and were constitutive. Agarose gel electrophoresis of plasmid deoxyribonucleic acid (DNA) from donor, cured, and transduced strains showed that a single plasmid was responsible. This plasmid, designated pNE131, was examined for sequence homology to two other plasmids, pE194 and p1258, from Staphylococcus aureus, which also code for erythromycin resistance. DNA from plasmids pNE131 and pE194 hybridized with one another, but no extensive homology to pI258 with either pNE131 or pE194 was found. Restriction endonuclease digests of pNE131 and pE194 showed no common fragments. However, sequence homology was localized to the nucleotides in pE194 that code for the 29,000-dalton protein responsible for erythromycin resistance. pNE131 was calculated to have 2,220 base pairs and is the smallest naturally occurring plasmid with a known function yet reported in S. epidermidis.  相似文献   

8.
Localization of the replication origin of plasmid pE194.   总被引:6,自引:3,他引:3       下载免费PDF全文
The pE194 replication origin was localized to a 265-base-pair interval by analyzing the ability of purified pE194 restriction fragments to direct replication of heterologous plasmids. Replication was dependent upon RepF protein supplied in trans. The origin region contained a GC-rich dyad symmetry which may serve as the RepF target.  相似文献   

9.
Characterization of a cryptic plasmid from Lactobacillus plantarum   总被引:11,自引:0,他引:11  
E E Bates  H J Gilbert 《Gene》1989,85(1):253-258
  相似文献   

10.
11.
12.
Staphylococcus aureus plasmid pE194 manifests a natural thermosensitivity for replication and can be established in several species, both gram positive and gram negative, thus making it attractive for use as a delivery vector. Like most characterized plasmids of gram-positive bacteria, pE194 generates single-stranded DNA. The direction of pE194 replication is clockwise, as determined by the strandedness of free single-stranded DNA. Significant homology exists between a 50-base-pair sequence in the origin of pE194 and sequences present in plasmids pMV158 (Streptococcus agalactiae), pADB201 (Mycoplasma mycoides), and pSH71 (Lactococcus lactis). We used an initiation-termination reaction, in which pE194 initiates replication at its own origin and is induced to terminate at the related pMV158 sequence, to demonstrate that pE194 replicates by a rolling-circle mechanism; the initiation nick site was localized to an 8-base-pair sequence.  相似文献   

13.
14.
The ability of the plasmid pE194 from S. aureus to serve as an autonomously replicating sequence (ARS) in yeast was shown. The hybrid plasmid pLD744 that contains pE194 and the yeast LEU2 gene sequences is unstable in yeast like other YRp-vectors: the mitotic stability of the pLD744 was as much as 1%. The plasmid pLD712 that differs from pLD744 by the existence of a centromeric sequence from the chromosome III of yeast Saccharomyces cerevisiae reveals about one order greater stability. The observation that there are some sequences in the primary structure of the pE194 which strongly conform to the ARS consensus in yeast inclines us to infer that the existence of ARS consensus on pE194 DNA is not sufficient for its effective replication in yeast.  相似文献   

15.
A naturally occurring plasmid from Bacillus subtilis, pIM13, codes for constitutively expressed macrolide-lincosamide-streptogramin B (MLS) resistance, is stably maintained at a high copy number, and exists as a series of covalent multimers. The complete sequence of pIM13 has been reported (M. Monod, C. Denoya, and D. Dubnau, J. Bacteriol. 167:138-147, 1986) and two long open reading frames have been identified, one of which (ermC') is greater than 90% homologous to the ermC MLS resistance determinant of the Staphylococcus aureus plasmid pE194. The second reading frame (repL) shares homology with the only long open reading frame of the cryptic S. aureus plasmid pSN2 and is probably involved in plasmid replication. The map of pIM13 is almost a precise match with that of pE5, a naturally occurring, stable, low-copy-number, inducible MLS resistance plasmid found in S. aureus. pIM13 is unstable in S. aureus but still multimerizes in that host, while pE5 is unstable in B. subtilis and does not form multimers in either host. The complete sequence of pE5 is presented, and comparison between pIM13 and pE5 revealed two stretches of sequence present in pE5 that were missing from pIM13. It is likely that a 107-base-pair segment in the ermC' leader region missing from pIM13 accounts for the constitutive nature of the pIM13 MLS resistance and that the lack of an additional 120-base-pair segment in pIM13 that is present on pE5 gives rise to the high copy number, stability, and multimerization in B. subtilis. The missing 120 base pairs occur at the carboxyl-terminal end of the putative replication protein coding sequence and results in truncation of that protein. It is suggested either that the missing segment contains a site involved in resolution of multimers into monomers or that the smaller replication protein causes defective termination of replication. It is concluded that pIM13 and pE5 are coancestral plasmids and it is probable that pIM13 arose from pE5.  相似文献   

16.
Integrated in theBacillus subtilis chromosome, hybrid plasmid pGG10 is capable of thermosensitive amplification. One amplification site corresponds to the core region of replicationori + of pE194, a component of pGG10; the other is a homologous region of theB. subtilis chromosome. A model of illegitimate amplification mediated by pE194 RepF is proposed.  相似文献   

17.
The complete nucleotide sequence of a naturally occurring Staphylococcus aureus plasmid, pT48 (from S. aureus strain T48), has been determined. The 2475 bp plasmid confers inducible resistance to macrolide-lincosamide-streptogramin B (MLS) type antibiotics. It is similar to the constitutive MLS resistance plasmid, pNE131, from Staphylococcus epidermidis and shows homology with S. aureus plasmids pSN2 and pE194. It contains a palA structure homologous to that on S. aureus plasmid pT181. The open reading frame, ORF B, within the pSN2 homologous region has a frameshifted C-terminus, relative to pNE131, resulting in a smaller, 158 amino acid putative polypeptide. The pE194 homologous region has the ermC resistance determinant and retains the leader region, deleted in pNE131, required for inducible expression of an adenine methylase. Another naturally occurring S. aureus strain, J74, shows constitutive resistance to erythromycin and contains a small plasmid, pJ74, which is similar to pNE131 but with a different deletion in the leader sequence. The results are consistent with the translational attenuation model for ermC expression.  相似文献   

18.
The ermC gene of plasmid pE194 specifies resistance to the macrolidelincosamide-streptogramin B antibiotics. This resistance, as well as synthesis of the 29,000 dalton protein product of ermC, has been shown to be induced by erythromycin. Weisblum and his colleagues have established that macrolide resistance is associated with a specific dimethylation of adenine in 23 S rRNA. We show that pE194 specifies an RNA methylase that can utilize either 50 S ribosomes or 23 S rRNA as substrates. Synthesis of this methylase is induced by low concentrations of erythromycin, and the enzyme is produced in elevated amounts by strains carrying a high copy number mutant of pE194. The methylase comigrates with the 29K ermC product on polyacrylamide gels. The purification and some properties of this methylase are described.  相似文献   

19.
Summary Cointegrates involving pairs of compatible staphylococcal plasmids can be isolated either by co-selection during transduction (Novick et al. 1981) or by selection for survival at the restrictive temperature of a thermosensitive, replication defective plasmid in the presence of a stable one. Cointegrates are formed by recombination at two specific sites, RSA and RSB. RSB is present on each of six plasmids analyzed, namely pT181, pE194, pC194, pS194, pUB110, and pSN2, and RSA is present on two of these, pT181 and pE194. In this communication, it is shown that the RS represent short regions of homology (RSA is some 70 bp in length and RSB is about 30) embedded in largely non-homologous contexts and that the crossovers take place within these homologous regions. The pT181 and pE194 RSA sequences contain several mismatches which permit the localization of the crossover events to several different sites within the overall RS segment. The recombination system involved is therefore general (homology-specific) rather than site-specific (sequence-specific). Mismatches included within the crossover region are always corrected to the pT181 configuration. The cointegrates are therefore formed by a relatively efficient general rec system that recognizes short regions of homology and gives rise to Holliday junctions that probably involve very short heteroduplex overlaps. The sequence results are consistent with asymmetric single-strand invasion of a contralateral gap with nucleotide conversion by copying. It is noted that RSB has substantial homology with the par sequence of plasmid pSC101, suggesting that it may be involved in plasmid partitioning.  相似文献   

20.
The complete nucleotide sequence of the Staphylococcus epidermidis plasmid pNE131 is presented. The plasmid is 2,355 base pairs long and contains two major open reading frames. A comparison of the pNE131 DNA sequence with the published DNA sequences of five Staphylococcus aureus plasmids revealed strong regional homologies with two of them, pE194 and pSN2. The region of pNE131 containing the reading frame which encodes the constitutive ermM gene is almost identical to the inducible ermC gene region of pE194, except for a 107-base-pair deletion which removes the mRNA leader sequence required for inducible expression. A second region of pNE131 contains an open reading frame with homology to the small cryptic plasmid pSN2 and potentially encodes a 162-amino-acid protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号